2020 Annual Groundwater Monitoring Report Per EPA CCR Rule (CFR § 257.90-.98)

Asbury Generating Station CCR Impoundment Jasper County, MO

January 2021

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

CERTIFICATE OF COMPLIANCE

Annual Groundwater Monitoring Report for Existing CCR Surface Impoundments

EPA CCR Rule Section 40 CFR 257.90 (e)
Empire District Electric Company – Asbury Power Plant
Asbury, Missouri

The following presents the Annual Groundwater Monitoring Report for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. This serves as certification that the facility is in compliance with 40 CFR 257.90 (e) of the EPA CCR.

40 CFR 257.90 (e) states:

(e) Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report.

CERTIFICATION 257.90 (e)

The undersigned Professional Engineer (P.E.) is familiar with the requirements of 40 CFR Part 257. The above summarizes the status of the Groundwater Monitoring for the Empire District Electric Company's CCR Impoundment at the Asbury Power Plant. I hereby certify that the facility is in compliance with 40 CFR 257.90 (e) and all information has been placed in the Operating Record. Notification of availability of this document should be provided to the State Director as required in section 257.107(h).

Name: Anika	Careaga, P.E.	Seal:			
Signature:	aniha Careaga				
Date:	1/27/2021				
Registration Number: 2005022085					
State: Missour	ri				

TABLE OF CONTENTS

CERTIFICATES OF COMPLIANCE

1.0 INTRODUCTION	1
2.0 BACKGROUND DATA	1
3.0 MAY 2020 SAMPLING EVENT	2
4.0 NOVEMBER 2020 SAMPLING EVENT	3
5.0 EXCUTIVE SUMMARY	3

LIST OF APPENDICES

Appendix A – May 2020 Sampling Event Appendix B – November 2020 Sampling Event

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundment. This Asbury Generating Station CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule.

In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017 the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via email when this document was posted on-line, as required in the CCR rule.

The EPA CCR Rule requires the annual groundwater report be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2020 sampling events will be posted on-line within 30 days of placement in the operating record.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017 to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

On May 13, 2020, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-7 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the May 2020 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event. The analysis of the additional data for the background data set was conducted and is included in the November 2019 Report in **Appendix B**. No trending was found in the additional four sets of data so they were added to the baseline data set to increase the statistical power of the background data.

3.0 MAY 2020 SAMPLING EVENT

On May 13, 2020, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-7 was taken.

	Table 1 – Constituents Identified Above Laboratory Reporting Limits									
			Du	ring May	2020 San	npling Eve	ent			
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.16	0.1	<0.08J	0.27	0.91	0.32	0.42	0.26
Calcium	mg/L	NA	38	100	270	100	260	250	190	480
Chloride	mg/L	NA	110	57	9.7	5.8	75	14	19	44
Fluoride	mg/L	4.0	0.42	0.17	0.12	0.34	0.45	0.27	0.34	<0.25J
рН	SU	NA	6.77	5.77	6.49	6.59	6.38	6.33	6.13	6.3
Sulfate	mg/L	NA	46	460	540	130	1200	880	710	1600
Total Dissolved Solids	mg/L	NA	560	910	1500	570	2100	1600	1400	2800

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event. **Appendix A** contains the complete report for the May 2020 sampling event.

During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event. Therefore, the site will continue with the detection monitoring program per the EPA CCR Rule (§ 257.94) on a semi-annual basis for the November 2020 sampling event.

4.0 NOVEMBER 2020 SAMPLING EVENT

On November 10, 2020, a semi-annual detection monitoring sampling event was conducted per the EPA CCR Rule (§ 257.94). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken.

Table 2 – Constituents Identified Above Laboratory Reporting Limits During November 2020 Sampling Event										
Constituent	Units	MCL	MW-2 (up)	MW-3 (up)	MW-4 (down)	MW-5 (down)	MW-5A (down)	MW-6 (down)	MW-6A (down)	MW-7 (side)
Appendix III										
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.25	1.9	0.32	0.38	0.22
Calcium	mg/L	NA	37	92	230	71	380	240	170	460
Chloride	mg/L	NA	120	62	4.4	6.4	170	13	25	39
Fluoride	mg/L	4.0	0.39	0.14	<0.1J	0.27	<0.1J	0.22	0.3	<0.1J
рН	SU	NA	6.51	5.68	6.8	7.6	6.72	6.96	7.09	6.81
Sulfate	mg/L	NA	56	530	550	160	2300	1200	850	2200
Total Dissolved Solids	mg/L	NA	430	860	1800	510	3200	1700	1500	2800

NA = Not Applicable

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event. The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L which the results were below. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94).

The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event. During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

Appendix B contains the full report for the November 2020 sampling event.

5.0 EXCUTIVE SUMMARY

This report is a summary of the 2020 sampling events and the findings of the statistical analysis of the results of the groundwater detection monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual reports which are included as appendices and have been placed in the Asbury Operating Record. Statistical analysis will continue utilizing interwell prediction limits per EPA's request.

The results of the alternative source demonstration will determine if the site continues with the detection monitoring program on a semi-annual basis or moves into assessment monitoring per the EPA CCR Rule (§ 257.94).

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX A

May 2020 Sampling Event

2020 Groundwater Monitoring, Sampling & Statistics **Per EPA CCR Rule (CFR § 257.90-.98)**

May Sampling Event

Asbury Generating Station CCR Impoundment Jasper County, MO

July 2020

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION	2
2.1 History	2
2.2 Site Geology	2
2.3 Groundwater Monitoring Network Design	3
2.4 Groundwater Monitoring Network	3
2.5 Seasonal Variation	3
2.6 Groundwater Flow Direction	4
3.0 BASELINE GROUNDWATER DATA	5
3.1 Baseline Data Collection	5
3.2 Baseline Data Analysis	5
4.0 GROUNDWATER SAMPLING EVENT	6
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	7
5.1 Precision	7
5.2 Accuracy	7
5.3 Representativeness	7
5.4 Comparability	7
5.5 Completeness	8
5.0 Statistical ANALYSIS	9
6.1 Sampling Results	9
6.2 Statistical Analysis	9
6.3 Results Interpretation	11
6.4 Proposed Actions	13

LIST OF FIGURES

Figure 1 – Site Location

Figure 2 – Monitoring Well Location

Figure 3 – Potentiometric Map

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundment. This Asbury Generating Station CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule.

In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017 the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via email when this document was posted on-line, as required in the CCR rule.

The EPA CCR Rule requires the annual groundwater report be posted on-line by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2020 sampling events will be posted on-line by January 31, 2021.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017 to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

On May 13, 2020, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-7 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the May 2020 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is on **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Generating Station CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

All wells are registered with MDNR – Missouri Geological Survey Program.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

Warner Sandstone. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine grained sandstone and claystone. The upper part is largely medium-bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in

the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

Riverton Shale. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient.

The groundwater monitoring wells (MWs) at the Asbury Generating Station are equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown on **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this May 2018 sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is actually a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule under per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of May and October.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas™ for Ground Water Version 9.2.13 was used to run the statistical analyses with settings used as recommended by the Sanitas™ training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event. The analysis of the additional data for the background data set was conducted and is included in **Appendix 5**. No trending was found in the additional four sets of data so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On May 13, 2020, eight (8) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-7. The sampling protocol and methodology was to be conducted in accordance to the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods					
Method	Description				
9056A	Anions, Ion Chromatography				
6020A	Metals (ICP/MS)				
SM 2540C	Solids, Total Dissolved (TDS)				
Field Sampling	Field Sampling				

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (Table 2). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During May 2020 Sampling Event							
WELL	STATIC WA (ft-B1		PURGE RATE	STABILIZED			
ID	Initial	Final	(mL/min)	рН			
MW-1*	NT	NA	NA	NA			
MW-2	1.04	3.20	200	6.77			
MW-3	0.00	0.50	200	5.77			
MW-4	5.26	9.94	200	6.49			
MW-5	0.99	6.02	200	6.59			
MW-5A	8.38	15.81	200	6.38			
MW-6	8.11	12.45	200	6.33			
MW-6A	7.38	11.78	200	6.13			
MW-7	2.56	2.74	200	6.30			

^{*} Water Level Only

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

NA – Not Applicable

NT - Not Tested (inaccessible)

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Test America). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision.</u> Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system as a whole. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks</u>. Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. The Test America laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents Identified Above Laboratory Reporting Limits During May 2020 Sampling Event									
Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.16	0.1	<0.08J	0.27	0.91	0.32	0.42	0.26
Calcium	mg/L	NA	38	100	270	100	260	250	190	480
Chloride	mg/L	NA	110	57	9.7	5.8	75	14	19	44
Fluoride	mg/L	4.0	0.42	0.17	0.12	0.34	0.45	0.27	0.34	<0.25J
рН	SU	NA	6.77	5.77	6.49	6.59	6.38	6.33	6.13	6.3
Sulfate	mg/L	NA	46	460	540	130	1200	880	710	1600
Total Dissolved Solids	mg/L	NA	560	910	1500	570	2100	1600	1400	2800

NA = Not Applicable

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020 and submitted to the facility. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. In order to appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

analyses was not considered strong yet. The data set consisted of only 13 sampling events from January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "Insufficient data to test for seasonality: data were not deseasonalized." Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

	Table 4 – EPA Review of Groundwater Reports
Facility	Asbury Power Plant
Location	Asbury, MO
Owner	Empire District Electric Company
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, inter well comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis
Problematic Alternate Source Determination	
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

Sanitas[™] for Ground Water Version 9.6.25 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

Statistical analysis was performed on the Appendix III constituents from the May 2020 sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have an exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

Table 5 lists the parameters with exceedances of prediction limits during the May 2020 sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Table 5 – Interwell Prediction Limit Exceedances Observed								
	During May 2020 Sampling Event Measured							
Constituent	Monitoring Well	Initial vs. Confirmed	Predicted Limit (mg/L)	Concentration (mg/L)	Drinking Water MCLs (mg/L)			
Boron	MW-5A	Initial	0.4147	0.91	NA/4.0 GWPS*			
Boron	MW-6A	Initial	0.4147	0.42	NA/4.0 GWPS*			
Fluoride	MW-5A	Initial	0.4053	0.45	4.0			

NA = Not Applicable *EPA proposed groundwater protection standard

6.3 Results Interpretation

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event.

During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event. Below is a discussion of the previous results for comparison.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intra-well prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH or sulfate.

During the May 2019, the result for Boron (MW-5A) indicated an initial intra-well prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intra-well prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resample confirmed the exceedances and the site planned to move into assessment monitoring.

Table 6 — December 2019 Resample Result Comparison							
Constituent	Units	MCL	MW-5A	MW-5A Resample			
Appendix III							
Boron	mg/L	NA	0.82	1.0			
Calcium	mg/L	NA	240	270			
Chloride	mg/L	NA	69	82			
Fluoride	mg/L	4.0	<0.5J	0.26			
рН	SU	NA	7.2	7			
Sulfate	mg/L	NA	1200	1300			
Total Dissolved Solids	mg/L	NA	2000	2200			

However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intra-well prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event.

During the November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances was confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples".

Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that a there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intra-well prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event.

During the May 2018, no intra-well prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intra-well prediction limits were exceeded during the May 2018 sampling event. The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

October 2017

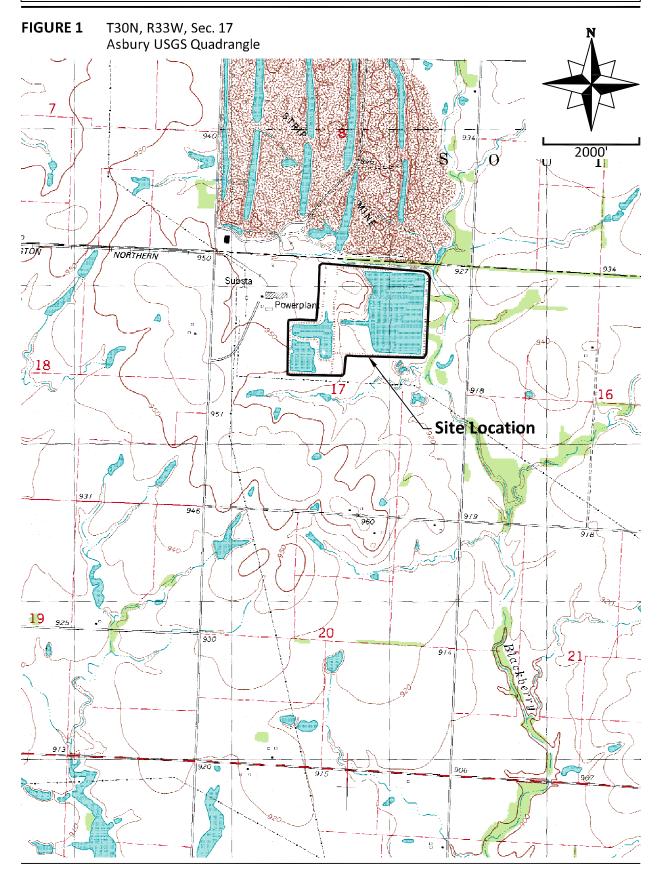
The result for Total Dissolved Solids (MW-7) indicated an initial intra-well prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids.

Review of the Total Dissolved Solids in the duplicate sample taken from the same well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intra-well prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will reevaluate MW-7 for Total Dissolved Solids during the next sampling event.

MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions

The site will continue with the detection monitoring program on a semi-annual basis. However, the constituents listed in Appendix IV will remain eliminated from the overall semi-annual


detection monitoring plan after this review of the semi-annual groundwater sampling event analytical results, according to the EPA CCR Rule. Statistical analysis will be completed with interwell prediction limits per EPA's request.

FIGURES

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2020 Site Location Map

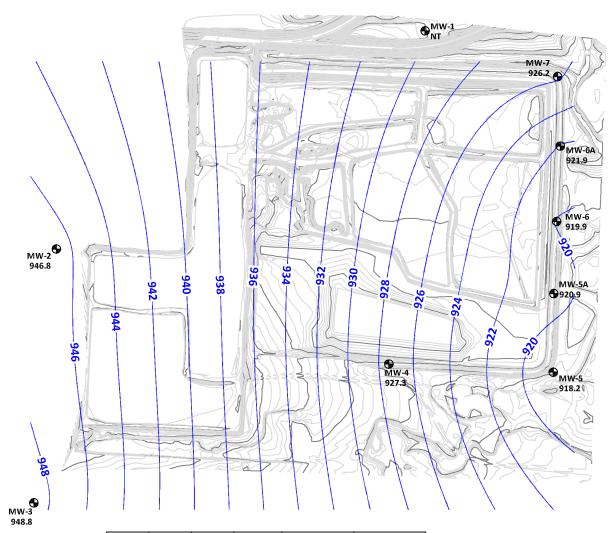
Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2020 Groundwater Monitoring System

FIGURE 2

Well ID	Northing	Easting
MW-1	435791.18 *	2765165.35 *
MW-2	434428.46	2762861.37
MW-3	432842.77	2762720.80
MW-4	433709.99	2764938.99
MW-5	433659.27	2765966.23
MW-5A	434150.04	2765969.78
MW-6	434600.46	2765987.98
MW-6A	435071.44	2766010.46
MW-7	435505.42	2765993.13

^{*} Coordinate location is approximate

Legend


Monitoring Well

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - May 2020 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Easting	Top Of Casing	Static Water Level (BTOC)	Static Water Level
MW-1	435791.18	2765165.35	933.4	NT	NT
MW-2	434428.46	2762861.37	947.8	1.0	946.8
MW-3	432842.77	2762720.80	948.8	0.0	948.8
MW-4	433709.99	2764938.99	932.6	5.3	927.3
MW-5	433659.27	2765966.23	919.2	1.0	918.2
MW-5A	434150.04	2765969.78	929.3	8.4	920.9
MW-6	434600.46	2765987.98	928.0	8.1	919.9
MW-6A	435071.44	2766010.46	929.3	7.4	921.9
MW-7	435505.42	2765993.13	928.8	2.6	926.2

Legend

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

Drew Landoll

From: Snellen, Greg <greg.snellen@dnr.mo.gov>

Sent: Tuesday, January 21, 2020 3:34 PM

To: Drew Landoll

Cc:aston.robert@epa.gov; Nagel, Chris; Snellen, GregSubject:RE: EPA Request for Information regarding CCR Units

Good afternoon Drew,

The Environmental Protection Agency (EPA) has been working to verify data on facility specific CCR websites required by 40 CFR 257 at the national level. EPA headquarters provided a list of inquiries to the EPA regions and requested they work with the states to answer their questions. States were given a choice as to the amount of involvement they could have with the information gathering. Missouri elected to take the lead on contacting the facilities in the state, providing the information requested by the EPA and relaying the answers back.

For your company, the EPA has questions about facilities and units which may be seeking an extension under the alternate closure provisions in 2020 and what type of extension may be requested.

They provided the following list of units:

		Part A	Plant			Ор	Unit	NOI	NOI	Alterr
Region	State	Extension	Name	Unit Name	Unit Type	Status	Class	Type	Date	NOI
					Surface					
7	MO		Asbury	Lower Pond	Impoundment	Active	Existing			
					Surface					
7	MO		Asbury	Upper Pond	Impoundment	Active	Existing			
					Surface					
7	MO		Asbury	South Pond	Impoundment	Active	Existing			

EPA has requested a response on extensions by February 14, 2020.

Additionally, the EPA has the following question related to groundwater monitoring:

Facility	Location	Owner	Units	Geology	Problematic Use of	Problematic	Conclusions
					Intra Well	Alternate Source	
					Comparisons	Determinations	
Asbury Power	Asbury	Empire District	Upper Pond-	Surficial unit of	Analytical results		While there are no
Plant	MO	Electric Company	unlined	clay, clayey sand,	indicate consistent		boring logs in the
			South Pond-	and silt	differences in		documents to
			unlined	approximately 15	contaminant		confirm that the
			Lower Pond-	to 25 feet thick	concentrations		wells are screened
			unlined	underlain by	between upgradient		in the same
				Warner Sandstone	and downgradient		geologic unit,
				approximately 25-	wells. Consequently,		consistency in the
				30 feet thick in the	inter well comparisons		field parameters and
				southern portion of	are feasible and would		the description of
				the site and the	be preferable in the		the geology suggest
				Riverton Shale in	absence of compelling		that the wells are
				the northern area of	reasons to use intra		screened in the
				the site	well analysis		sandstone. The
							analytical results
							indicate consistent
							differences in
							contaminant
							concentrations

Facility	Location	Owner	Units	Geology	Problematic Use of Intra Well Comparisons	Problematic Alternate Source Determinations	Conclusions
					Companisons	Deciminations	between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

At this time, there is not a deadline for this request.

Please let the Department know if you have any questions. You can also direct inquires to Bob Aston with EPA Region 7 who is copied on this email.

Thank you

Greg Snellen Environmental Supervisor Waste Management Program 573-526-8779

We'd like your feedback on the service you received from the Missouri Department of Natural Resources. Please consider taking a few minutes to complete the department's Customer Satisfaction Survey at https://www.surveymonkey.com/r/MoDNRsurvey. Thank you.

From: Aston, Robert

Sent: Friday, January 10, 2020 7:48 AM

To: Nagel, Chris Christopher.Nagel@dnr.mo.gov; Snellen, Greg greg.snellen@dnr.mo.gov>

Cc: Martin, Mike <Martin.Mike@epa.gov>; Kloeckner, Jane <Kloeckner.Jane@epa.gov>; Catlin, Kelley

<Catlin.Kelley@epa.gov>; Werner, Leslye <Werner.Leslye@epa.gov>; Hayworth, Brad <Hayworth.Brad@epa.gov>

Subject: CCR workload

Chris and Greg,

As a follow-up to our call on Wednesday

On Monday December 2, 2019 EPA published in the Federal Register a proposed rule for the Disposal of Coal Combustion Residuals From Electric Utilities: A Holistic Approach to Closure Part A: Deadline To Initiate Closure. The major elements of this proposed rule include:

- Definition of Lined Unit (removing a clay-lined unit from the definition),
- New initiation of Closure and Cease Receipt of Waste Deadline of August 31, 2020,
- New Alternate Closure Provisions for surface impoundment: Extensions to the initiation of closure

Nationally, EPA is gathering data to determine the number of facilities and units which may be seeking an extension under the alternate closure provisions in 2020 and is tasking the regions to work with our state partners and the facilities to determine the number of such facilities and units and what type of extension may be requested. Region 7 is seeking the state's assistance in gathering this information.

To be eligible for an extension the surface impoundment needs to be:

- An existing surface impoundment (eligible inactive surface impoundments should already be closing)
- An unlined or "clay-lined" surface impoundment
- Passed all location restrictions or only failed the uppermost aquifer restriction
 - Those that failed multiple location restrictions or did not post should have ceased receipt of waste in April 2019

This proposed rule offers facilities three options with regards to an extension

- 1.) Three month self-implementing extension (§ 257.103(e)(1)). Under this provision the surface impoundment must cease receipt of waste no later than November 30, 2020, and the facility must document certain conditions and certify "that the CCR and/or non-CCR waste streams must continue to be managed in that CCR surface impoundment to allow the facility to complete the measures necessary to provide alternative disposal capacity, either on-site or off-site of the facility" on its publicly available website no later than August 31, 2020.
- 2.) Site specific alternative to initiation of closure deadline due to lack of disposal capacity (§ 257.103(f)(1)). This provision allows facilities to submit demonstrations to EPA for approval for a specific amount of time to be able to continue to use their surface impoundment while developing alternate capacity for the CCR and non-CCR waste streams. This extension allows the facility to continue to use a unit (surface impoundment) for a maximum of 5 years, until October 15, 2023. Under this extension, facilities are required to submit their demonstrations to EPA no later than June 30, 2020.
- 3.) Site specific alternative to initiation of closure deadline due to Permanent Cessation of Coal Fired Boiler(s) by a Date Certain (§ 257.103(f)(2)): If a facility is ceasing generation of coal fired boiler(s) by a date certain, then the facility must complete closure by October 17, 2023 for surface impoundments less than 40 acres and by October 17, 2028 for surface impoundments larger than 40 acres. The facility is required to submit a demonstration to EPA for approval to continue to use their CCR surface impoundments. Under this extension, demonstrations are required to be submitted to EPA for approval no later than May 15, 2020.

As you can see above, the deadlines for requesting extensions are approaching quickly and will become effective when the proposed rule is final. EPA is requesting assistance from the regions, states, and facilities to estimate the number and types of extensions facility owners/operators may be requesting. EPA headquarters has developed a list (attached) of facilities which may be eligible for extensions by EPA Region and State. This list was developed by examining information included on individual facility web sites which are required as part of the CCR regulations. The list of potential sites in Missouri has been attached (attached Excel file) to this email. EPA headquarters has requested that individual regions reach out to their state counterparts to identify facility contacts and reach out to those contacts to determine which facilities and units may be requesting an extension and which type of extension may be requested. EPA headquarters has requested that this information be collected by February 14, 2020.

As part of the effort to determine what type of an extension a facility may need, EPA would also like the state's assistance in obtaining input regarding an estimate of the length of the extension that may be requested by the facility owners/operators. As part of the discussions, we need an estimate regarding the length of the extension. For example, EPA needs to estimate the following:

- Facilities that will not need an extension
- Facilities that will only need till November 2020 (short term extension)
- Longer than November need about 6 months more
- Longer than November need about 1 year
- Longer than November need longer than 18 months

EPA is collecting this data in order to estimate the potential workload which could be associated with reviewing the above mentioned extension requests.

In addition, EPA headquarters routinely reviews the information posted on individual facility web sites. As part of that review EPA headquarters has identified sites in each region where specific facility information which is required to be posted is either missing, incomplete or technical questions exist. As part of this review EPA has developed two lists. See attached. One list deals with compliance issues related to documents which are, or in some cases are not, posted on the specific facility websites. The second list deals with groundwater questions related to Alternate Source Demonstrations and Intrawell analyses. With regards to the list dealing with compliance issues related to documents, EPA headquarters has requested that the regions work with their state counterparts to identify the appropriate facility contact. The plan is that EPA Headquarters would take the lead in coordination with the regions and states to contact the facilities to discuss and remedy the identified issues. With regards to the second list dealing with Alternate Source Demonstrations, EPA headquarters has requested that the regions work with their state counterparts to identify the appropriate facility contacts. The regions and or the states would then take the lead to address any identified issues. No specific timeframe has been established to address the questions related to either of the above lists. Region 7 anticipates working closely with the state in addressing these issues.

It should be noted that EPA headquarters routinely reviews CCR facility websites and could identify additional questions. If that should occur Region 7 would again reach out to the states.

At your convenience I would like to follow-up with you on the above issues sometime next week to discuss Missouri's perspective and any comments you may have. If you have any questions please do not hesitate to call or email me.

Thanks

Bob Aston USEPA Region 7 (913)551-7392

Region State	Part A Extension	Plant Name	Unit Name	Unit Type	Op Status	Unit Class	NOI Type	Alternative NOI _Closure_ Date Provisions NOI	Liner Type	Liner_ Posting_ Date	Location Restrictions	Groundwater Monitoring Status
7 MO		Asbury	Lower Pond	Surface Impoundment	Active	Existing			Unlined	10/17/2016	Fail Aquifer Only	Detection Monitoring - No SSIs
7 MO		Asbury	Upper Pond	Surface Impoundment	Active	Existing			Unlined	10/17/2016	Fail Aquifer Only	Detection Monitoring - No SSIs
7 MO		Asbury	South Pond	Surface Impoundment	Active	Existing			Unlined	10/17/2016	Fail Aquifer Only	Detection Monitoring - No SSIs

Missouri Department of

dnr.mo.gov

NATURAL RESOURCES

Eric R. Greitens, Governor

Carol S. Comer, Director

NOV 0.2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at www.oa.mo.gov/ahc.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at pam.hackler@dnr.mo.gov. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:

October 18, 2017

SWR18011 Jasper County

TO:

Pam Hackler- WPP- Industrial Wastewater Unit

FROM:

Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program,

MGS

SUBJECT:

Site characterization for existing CCR

impoundments

Asbury Power Plant Site Characterization Work

Plan- CCR

37 21 22.66 Latitude, -94 35 4.79 Longitude,

Jasper County, Missouri

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring

Boron

Calcium

Chloride

Fluoride

рΗ

Sulfate

Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

Molybdenum

Selenium

Thallium

Radium 226 and 228 combined

1st Baseline Event – January 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
			II.	Append	lix III					
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Calcium	mg/L	NA	57	74	220	84	200	250	140	570
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800
				Append	ix IV					
Antimony	mg/L	0.006	<0.002	<0.002 J						
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

2nd Baseline Event – March 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29
Calcium	mg/L	NA	120	92	260	94	190	250	160	620
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

3rd Baseline Event – May 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29
Calcium	mg/L	NA	130	100	91	5	59	11	90	36
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J				
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

4th Baseline Event – August 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22
Calcium	mg/L	NA	38	79	110	74	180	220	130	430
Chloride	mg/L	NA	120	77	35	6	35	12	65	49
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J				
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002 J							
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J				
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

5th Baseline Event – October 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26
Calcium	mg/L	NA	43	91	100	94	220	260	130	490
Chloride	mg/L	NA	130	65	74	6	29	13	65	56
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

6th Baseline Event – March 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26
Calcium	mg/L	NA	38	93	250	86	200	260	170	500
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J							
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

7th Baseline Event – June 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26
Calcium	mg/L	NA	42	100	300	89	200	260	160	470
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

8th Baseline Event – August 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	dix III					
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

Facility: Asbury CCR (Permit #) Monitoring Well ID: MW- Sample X Blind Duplicate Field Blank									nk .	
Purge Info Method o	ormation: of Well Purge:	Peristaltic	Pump with 3/	8 - inch Dia	meter Tubi					
		Actual Pu	urge Volume R	Removed: Z	100	mL post	pump calibra	ition .		
		. 3	/	0:01				()		
Date / Tir	ne initiated:	5- (2)	-20 @ (s	X'20	Date / Ti	me Comp	leted: 5-	2-20 @		
Well Purg	ged To Drynes				eum or Gas	Detected	? Y /(N)			
Purge Da							T			
										Other
	Purge	Cumulativ	e		Speci		Dissolved			(Color, Clarity,
	Rate	Volume	Temp.	pН	Conduc		Oxygen	ORP		Odor)
Time	(mL/min)	(mL) (°C)	(SU)	(mS/e	:m)	(mg/L)	(MV)		Oddij
12.200	200	1200	2 \	7.03			\ /	\ /		
A SON A	200	17	- 1	6.88						
10/0		1600	/	475		$\overline{}$	$\overline{}$	-X		
30		2000	X	6.13		\	A	-/+	-	
33		2200		6.77						
CON			1/					/		
			100		Fie	ld Inspect	tion	G600	<u>Fair</u>	Poor
		/ (7:29			cess		/ G	F	P
Time sar	mpled	(X 10 /		1007	d Conditio		(G \	F	Р
,,,,,	-	01	18 1	1500		sing Cond		G	F F	P P
		1 Tart	de 1	gw J C	0	cking Cap		G	F	P
Weather	Conditions_	0100	vy c			er Conditi		G	No.	N/A
			(,			Id Inspect		V) N	N/A
		(.(14			ell ID Visib		٧	N	N/A
Water L	evel Start	() (<u> </u>			anding Wa		Y	(N)) N/A
		70	M '			easuring P		$\langle \hat{\mathbf{Y}} \rangle$		N/A
		O,X	. U				with MDNR	4	(N	N/A
Water L	evel Finish				M	aintenanc	e Performed	Y		N/A
							ation Norma	I Ox	N	N/A
Nama (A	MEC Field San	nnler). Rvan (Octbals and Ri	ck Elgin	Ec	uipment (Calibration N	ormal (Y)	LN	T N/A
Ivallie (I	VILC HEIG SUI		100				nent Needed	Y	\ N	/ N/A
		A	5//4-	ست	Ar	ny deviatio	ons from SAP	Υ	N	/ N/A
Sampler	Signature 🖊	//	Ko	}_ _	Se	diment Th	nickness Ched	cked Y	N	N/A
	, C									
	al Data: Aver	age of sampl			24141.2	BA14/ 2	MW-4	MW-5	MW-5A	MW-6
Const	ituent	T	Units	MW-1	MW-2	MW-3	6.30	6.83	6.82	6.72
pH S.U. NO TES					5.83	5.08 1.132		0.841	1.769	1.900
Specific Conductance umhos/cm GW					0.786	1.152	2.003	0.071		
Total Well Depth ft Level					1.24	0.4	5.39	1.32	6.92	7.86
Average GW Depth ft Only					1.24	0.7	5.55			
	ge GW Drop		ft	DON'T		800	800	800	800	800
	em Volumes		mL	SAMPLE	800	300	300			
∐ (Min	Purged Amou	int)		37 tivil 62	10				hi	

Facility:	Asbury	CCR (Perm	nit #	1	Me	onitoring V Sample	Vell ID: MV	N- U	J Field	- Plant [
_	iormation: of Well Purge	e: Peristal	tic Pump with	n 3/8 - inch [Diameter T		A Billio	Duplicate	Field	Blank		
						-						
			l Purge Volum									
Date / Tir	me Initiated:	5- (8	20 @	11:38	Date /	Time Com	pleted: 5-	- (2 -20	@	-		
Well Purg	ged To Dryne	ss?: Y /	N	Petr	oleum or G	as Detecte	ed? Y (N					
Purge Da	ta:											
Time	Purge Rate (mL/min)	Cumula Volun	ne Temi		Cond	ecific uctivity	Dissolved Oxygen	ORP		Other (Color, Clarity,		
)	(mL) (°C)	(SU)	(ms	(cm)	(mg/L)	(MV)	-	Odor)		
12:00 200 1000 9.05 5.73 1. 212 50.2 -135.2												
195 1400 8.98 5.75 1, 218 4.36 -126,4										1		
07												
al		32 0	28	757	7/2		- 1	-	G.	1		
100	09 2200 80935077/.224 202 -12309											
Time sam	pled		2:10	100	A	ield Inspec ccess ad Condition asing Cond	on	G G G G	Fair F F	<u>Poor</u> P P		
Weather (Conditions_	Ci W	indy	405	R	ocking Cap iser Condit	& Lock ion	G G Yes	F F	P P N/A		
		\cap	$\Lambda \Lambda$			ell ID Visib		Υ Υ	<u>(</u> <u>(</u> <u>(</u>	N/A		
Water Lev	el Start					anding Wa		X) N/A		
Water Lev	vel Finish	0.	50'		N S _I			(Y) Y		N/A N/A N/A N/A		
Name (ME	EC Field Samր	oler): <u>Ryan</u>	Ortbals and R	ick Elgin	Ec	quipment C edevelopm	ation Norma Calibration No ent Needed ns from SAP	Carried Services	N N N N N N N N N N N N N N N N N N N	N/A		
Sampler Si		4		2_			ickness Chec	-	N	/ N/A		
	Data: Averag	ge of sampl		8.634.4	141410							
Constitu pH	ETIL	- (Units S.U.	MW- 1 NO TEST	MW-2 5.83	MW-3 5.08	MW-4 6.30	MW-5 6.83	MW-5A 6.82	6.72		
	Conductance	<u> </u>	umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900		
	ell Depth		ft	Level				5.5.12				
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86		
	GW Drop		ft									
	n Volumes)	mL	DON'T	800	800	800	800	800	800		

		Field	Sampli	ng Log		, /		
Facility: Asbury CCR (Perm	i+ #	1	N.4	anitavina 1	Vallina NAN	4		
ASSULT CON FERMI	110 #		į IVI	Sample	Vell ID: MV		Piolel	e Diamin I
Purge Information:				Sample	A Billio	Duplicate	Fleid	Blank
Method of Well Purge: Peristal	tic Pump with	3/8 - inch D)iameter T	uhing		1		
	•	•	Δ.					
Actua	l Purge Volum	e Removed:	100	mL pos	st pump calik	oration .		
Date / Time Initiated: 5- 1	3	11:14				13		
Date / Time initiated: 5- vc	-20 @	191	Date /	Time Com	pleted:5-	- (U -20	@	-
Well Purged To Dryness?: Y /		Potre	oloum or G	ac Dotosts	ed? Y/N	7		
Well alged to Divitess:		retit	oledin of C	as Detecte	ur 1 // N	/		
Purge Data:								
			T					
Purge Cumular	tive		Sne	ecific				Other
Rate Volum		o. pH		uctivity	Dissolved			(Color Clarity
Time (mL/min) (mL) (°C)	(SU)		5/cm)	Oxygen	ORP		Odor
11:58 200 800	1 1 1 1			/ ((mg/L)	(MV)	/	Outr
		6.3		-/	\rightarrow	\rightarrow	/	
2:00 /200		6.39	,	\ /	\/			
1600	X	6.47	L	V		V		
:04 2000		(1/0)		\wedge	\rightarrow	$+\Lambda$	-	_
.09		6.40						
	(5	$\langle \rangle$	/ 1	0	
			F	ield Inspec	tion	Good	Fair	Poor
/	2:0		Α	ccess		7g \	F	P
Time sampled(W, U	6	P P	ad Condition	on	/ G \	F	Р
\sim	/ /			asing Cond		G	F	Р
(190	all 1	N1/ 7		ocking Cap		\ G /	F	Р
Weather Conditions (00	09 0			iser Condit		G	F	P
_	101			ield Inspec		Yes	No.	
Water Level Start	d (a			ell ID Visib		\mathcal{L}	N	57
water reversion:	211			tanding Wa lear of Wee		Y V		N/A
9	W 4			leasuring P		V	7	N/A N/A
Water Level Finish	7 6			_	with MDNR	V	N	3 N/A
· ·					e Performed	Y_	$\sim \frac{C_N}{N}$) N/A
					ation Norma	I (Z		N/A
Name (MEC Field Sampler): Ryan-	Onbals and Ri	ck Elgin	Ec	quipment C	Calibration No	ormal 🔗	N	N/A
1	9//	a	Re	edevelopm	ent Needed	C	(N	N/A
· / //	1 M		The same		ns from SAP	Υ	l N	N/A
Sampler Signature	100		Se	ediment Th	ickness Chec	ked Y	\ N	/ N/A
Historical Data: Average of sample								
Constituent	Units	MW-1	MW-2	MW-3	MW-4	MW-5	BANAL EA	8414/6
рН	S.U.	NO TEST	5.83	5.08	6.30	6.83	MW-5A	MW-6 6.72
Specific Conductance	umhos/cm	GW	0.786	1.132	2.083	0.841	6.82 1.769	1.900
Total Well Depth	ft	Level	0.700	1.102	2.003	0.041	1.703	1.300
Average GW Depth	ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
Average GW Drop	ft			2	7.00	2.02	0.52	7.00
2 System Volumes		DON'T	000	800	800	800	800	800
(Min Durgod Amount)	mL		800					

SAMPLE

(Min Purged Amount)

Facility:	Asbury	CCR (Pern	nit #)	_ M	_	Vell ID: M\				
	ormation:					Sample	X Blind	d Duplicate	Field	Blank	
Method o	of Well Purge	: Peristal	tic Pump wit	th 3/8 - inch	Diameter T	ubing					
		Anton	(Dumas Value	me Removed	200	7	vees one life				
		Actua	Purge voiu	me kemoved		mL po	st pump calik	oration.			
Date / Tir	me Initiated:	5- (-20 @	10:50	t Date	Time Com	pleted: 5-	- 20	@	<u> </u>	
Well Purg	ged To Dryne	ss?: Y /		Petr	roleum or 0	Gas Detecte	ed? Y N)			
Purge Da	ta:							¥	-,		
	Divino									Other	r
	Purge Rate	Cumula				ecific	Dissolved			(Color	
Time		Volun				uctivity	Oxygen	ORP		Clarity	
174	(mL/min)	(mL) (°C	(SU)	S/cm)	(mg/L)	(MV)		Odor)	<u> </u>	
10:58	200	800	2	16.6					1		
11-00		1200	2 \	16.4	9	\vee	X				
02		1601		655	5	\wedge	/\				
:04		TOG	9) [6,5	9 /			//			
			/				/		,		_
			11 0		F	ield Inspec	tion	Gerood Gerood	Fair	Poor	=
			$///\langle f \rangle$	5		ccess		G	F F	P	
Time sam	pled		(1.0		P	ad Condition	on	G	F	Р	
		1	1	1 5%	95 0	asing Cond	lition	G	F	Р	
	/	/ /Ac)	111/1	MI) 7/	/	ocking Cap		G	F	Р	
Weather (Conditions_(100	ay oc	700		iser Condit		(g)	F	Р	
		,	\ aA	1		ield Inspec		Yes	No.		
Water Lev	ral Ctart	() 079	*		/ell ID Visik		Y) N	N/A	
water Lev	erstart		4	/		tanding Wa		Y	<u>(N</u>	N/A	
			\wedge	1		lear of We		Y.	1 (N) N/A	
Water Lev	el Finish	V	10 UX			leasuring P	with MDNR	Ÿ		N/A N/A	
							e Performed	. V		N/A N/A	
							ation Norma	/X		N/A	
Name (ME	C Field Samp	ler): Ryan	Ortbels and	Rick Elgin			Calibration No		N	N/A	
		/1	1611				ent Needed	Y	IN		
	,	/ //	/ KM	رمن	A	ny deviatio	ns from SAP	Υ	/ N		
Sampler Si	gnature	11			Se	ediment Th	ickness Chec	ked Y	/ N	N/A	
Historical	Data: Averag	e of samp	ling events							4	
Constitu		C OI SQUID	Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	
pH			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72	
	Conductance		umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900	
Total We			ft	Level	350	2.202	2.000	0.041	2.700	1.500	
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86	
	GW Drop		ft				1	2.02	5.52	7.00	
	Volumes			DON'T	000	800	800	800	800	800	
	ged Amount	1	mL	SAMPLE	800			977			

Facility:	Asbury	CCR (Perm	nit#)	_	Monitoring '	Well ID: MV	v-5A		<u></u>
Purge In	formation:					Sample	E X Blind	Duplicate	Field I	Blank
_	of Well Purge	: Peristal	tic Pump wi	th 3/8 - inch	n Diamete	r Tubing				
				_	20	00	ost pump calik			
Date / Ti	me Initiated:	5- 6-	-20 <u>@</u>	10:3	Dat	e / Time Con	npleted: <u>5</u> -	3-20	@	=
Well Pur	ged To Dryne	ss?: Y /		Pe	troleum o	r Gas Detect	ed? Y N			
Purge Da	ita:									
										Other
	Purge Rate	Cumula			1.	Specific	Dissolved			(Color,
		Volun		np. pF		nductivity	Oxygen	ORP		Clarity,
Time	(mL/min)	(mL) (°	C) (SU)) (mS/cm)	(mg/L)	(MV)		Odor)
10:35	200	800	7	16.1	2	/	\ /	1		C
121		1200) \	162	0					
:39		1601		6.3	00			X	1	
:41		2001	1	6.0	18	X	\wedge			
		000		\	17	$\overline{}$				
						Field Inspe	ction	Good,	Fair	Poor
		/A	.45			Access	CLIOII	G	F	P
Time sam	pled	(U	·4~)			Pad Condit	ion	G) F	P
		01	<i>r</i>	1	4)	Casing Con	dition	G	F	Р
	Conditions	121d	1/ 1.0	11/3/	15	Locking Cap	& Lock	G	F	Р
Weather	Conditions	1000	4 00	W/U		Riser Condi	tion	\G/	F	Р
		0 -	01			Field Inspe		Yes) <u>No</u>	N/A
	10.	S.J	X			Well ID Visi			, N	N/A
Water Le	vel Start	4 -	0 / 1			Standing W		Y	<u>A</u>	≼ N/A
		151	\mathcal{I}			Clear of We		Cy.) N/A
Water Le	vel Finish	U_iU	1			Measuring		-	Ŋ	N/A
water te	vei rinisn						e with MDNR ce Performed	Y	9	N/A
							nation Norma	سلام ا) W	N/A N/A
Name (M	EC Field Samp	oler): Rvan	Orthols and	Rick Flain			Calibration No		, N	→ N/A
, , , , , , , , , , , , , , , , , , , ,			16)			nent Needed	Y	\ N	10.00
		N		س			ons from SAP	Υ	/ N	N/A
Sampler S	ignature/	$\angle L$		}			hickness Chec	ked Y	/ N	N/A
		14							b_	١
	Data: Averag	ge of samp								
Constitu	uent	_(Units	MW- 1				MW-5	MW-5A	MW-6
pH	Conductor		S.U.	NO TEST			6.30	6.83	6.82	6.72
	Conductance		umhos/cm		0.786	1.132	2.083	0.841	1.769	1.900
	ell Depth		ft	Level	4.34		F 00	4.00	6.00	7.00
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
			ft	DON'T	-	900	900	900	900	800
2 System Volumes mL DON'T SAMPLE 800						800	800	800	800	800

Facility:	Asbury (CCR (Permi	t#)	М		Well ID: MV			Slant M
	formation: of Well Purge	e: Peristalt	ic Pump with	1 3/8 - inch 1	Diameter T	Sample	E X Blind	Duplicate	Field 8	Blank .
Wicerioa	or well raige					_			(6.	30
		Actual	Purge Volum	ne Removed	100	mL po	st pump calib	ration .		
Date / Ti	me Initiated:	5- [) -20 @/	80:00	Date	Time Con	nleted: 5 -	13-20	<u>@</u>	
			<u>~</u>		Date /	Time con	ipieteu	1 -20	w	
Well Pur	ged To Dryne	ss?: Y /(v)	Petr	oleum or G	as Detecto	ed? Y / (N			
Purge Da	ita:									
										Other
	Purge	Cumulat				ecific	Dissolved			(Color,
	Rate	Volum				uctivity	Oxygen	ORP		Clarity,
Time	(mL/min)	(mL) (°C)	(SU)	(m:	S/cm)	(mg/L)	(MV)	/	Odor)
//.'/3	200	1000		16.00			\ /	17/		
1/5		1400) \ \	621			\ /			
217		1800	$X \mid X$	6.39	5	\vee	X	X		
0		1200		6.3	3 /			/\		
· ·			1/	1		1	/			
				1	- F	ield Inspe	ction	<u>8009</u>	Fair	Poor
		- // ,	20			ccess	011011	G	F	P
Time sam	npled	11'	W O		P	ad Conditi	on	G	F	Р
	,	01 1	1	A		asing Cond		G	F	Р
		lowde	1 / 11	12/1		ocking Cap		\ G	F	Р
weather	Conditions <u></u>	1000) LW			iser Condi		G	F	P
		2			_	<mark>ield Insped</mark> Vell ID Visil		Yes	No.	N/A N/A
Water Le	vel Start	Oil				tanding W		Ů	, N) N/A
		n //				lear of We		Y_	, (N	N/A
	vel Finish	24	5			leasuring l		\(\tilde{\pi}\)	Į (N/A
Water Le	velFinish <u>(</u>		<u> </u>				with MDNR	Υ	GA	N/A
					Λ	1aintenand	e Performed	Y	7 0	N/A
N1 (N 4	EC EL LLC	I A Barrestasia					nation Norma	y	N	N/A
Name (M	EC Field Samp	oler): Ryan	Ortbals and R	Rick Elgin			Calibration No	ormal (Y)	N	1 N/A
		/1/	٧// -	0			nent Needed ons from SAP	~~~ v	⟨ N	N/A N/A
Sampler S	Signature /	1/	(1)				nickness Chec	ked Y	N	N/A N/A
		1					monness once	illed 1		14/14
	Data: Averag	ge of sampli								
Constitu	uent		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
pH	Camalarata		S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance		umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
	ell Depth	-	ft ft	Level	1 24	0.4	F 30	1 22	6.03	7.96
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	n Volumes		11	DON'T		800	800	800	800	800
	rged Amount	,	mL	SAMPLE	800	800	800	800	300	

Facility:	Asbury (CCR (Permi	t #		Me	onitoring \	Well ID: MV	v- 6A	Field Blank	
	formation: of Well Purge	e: Peristalt	ic Pump with	3/8 - inch E	Diameter T		Blind C	ouplicate []	rieia Biank	·,
		Actual	Purge Volum	e Removed:	180	mL pc	ost pump calib	ration.		
		15	3	9:118	1	8		13		
Date / Ti	me Initiated:	5- (-20 @	1.98	Date /	Time Con	mpleted: <u>5 –</u>		0	T-f1
Well Pur	ged To Dryne	ss?: Y //	9	Petr	oleum or G	ias Detect	ed? Y N) 1	1100 Alou	v-thr
Purge Da	nta:								/**Cu	
Time	Purge Rate (mL/min)	Cumulat Volum (ml			Cond	ecific uctivity 5/cm)	Dissolved Oxygen (mg/L)	ORP (MV)		Other (Color, Clarity, Odor)
01/51		0 0		16.01		1	(mg/L)	(1010)		
9:51	200	600		/	\rightarrow					
.53		1000		6,00		/				
:55		1400	$1 \vee$	6.0	7	7	X	X		
:57		1200		6:1	1					
		1000	<u> </u>	011	7/	\rightarrow				-
			/		1			/ \		
					<u>F</u>	ield Inspe	ection	Good	<u>Fair</u>	Poor
		100	$)$ [\wedge \wedge		Α	ccess		(G \)	F	Р
Time sam	npled	()	700		P	ad Condit	ion	G	F	P
		()	1 100	1/0	9 0	asing Con	dition	G	F	Р
	/	IN IN	11 600	ν $\gamma(1)$		ocking Cap		\G /	F	Р
Weather	Conditions	1000	\rightarrow			iser Condi		(G)	F	P
		100	1		_	ield Inspe		Yes	No	N/A
M	10.	1,5	7			Vell ID Visi			N	N/A
Water Le	vei Start		\bigcap			tanding W		Y	95	N/A
		1/~	701			lear of We				N/A
Water Lo	vel Finish	11:7	0			leasuring	e with MDNR			N/A N/A
vvater Le	vei riilisii	· · · · ·				1.0	ce Performed	Y 🙃		N/A
							nation Norma			N/A
Name (M	EC Field Sam	oler): Ryan	ortbals and R	ick Flain			Calibration No.	1	N	N/A
	2011010 00111	1	30	NOK EIGHT			nent Needed	ormar V	K	N/A
	/	/ N	1/10				ons from SAP	Y	N	N/A
Sampler S	Signature	/(_	KING.			-	hickness Chec	ked Y	(N	N/A
	Data: Averag	ge of sampli								
Constitu	uent		Units	MW- 6A	MW-7					
pH	Canduatana		S.U.	6.87	6.12					
	Conductance	1	umhos/cm	1.601	2.699					
	ell Depth		ft	7.00	2.04					
	GW Depth		ft	7.28	3.04	-				
	m Volumes		ft			-				
	n volumes Irged Amount	.)	mL	800	800					

Facility:	Asbury CO	CR (Permit	#)	Mo		Well JD: MW			
						Sample	e 🖊 🛮 Blind D	uplicate 💢	Field Blank	
Purge Info							_	8:31	3	
Method of	f Well Purge:	Peristalti	c Pump with	3/8 - inch Di	iameter Tu	bing		0.30	7	
		Actual	Purge Volume	e Removed:	2000	mL pc	ost pump calib	ration.		
Date / Tim	e Initiated:	5- 1	3 -20 @	755	Date /	Time Cor	mpleted: <u>5 –</u>	C3 -20- @	0	1.5
Well Purge	ed To Dryness	s?: Y		9;06 Petro	leum or G	as Detect	ed? Y	\mathcal{L}_{i}	xed e	kec.
Purge Data	a:							1 1/		CORN
										Other
	Purge	Cumulati	ve		Spe	cific	Dissolved			(Color,
	Rate	Volume	1	. pH		ıctivity	Oxygen	ORP		Clarity,
Time	(mL/min)	(_ml) (°C)	(SU)	(mS	/cm)	(mg/L)	(MV)		Odor)
8:10	200	200	1 9 82	6.34	1) 1/2	90	206	-110 a		0
	200	000	1600	2 7	ON NO	10	2.00	100 7		
:12		1200	19.87	16031	100	97	2.19	-160.3		
14		1600	9.91	6.31	2.7	03	3.22	- 1 ANY 198	-148.5	/
11		1000	200	1 4	1 7 -	217	2 21/	- 11/2 "	2	
9 (6		SUCH	J 7071	6.30	X.	10	J127	17000	/	0
		0	- A		Fi	eld Inspe	ection	Good	<u>Fair</u> P	oor
		X	2.0			ccess		/ G	F	P
Time samp	oled	<u> </u>		- 9		ad Condit		G	F	P
			1 1	10001		asing Con		G	F	P P
Weather C	Canalitians	-100/1	192	577		ocking Ca iser Cond	•	G	F	P
weather C	.onartions	1				eld Inspe		Yes	No	N/A
		~/	56	,	_	ell ID Vis		$\overline{(Y)}$	N_	N/A
Water Leve	el Start	X1 -	10		St	anding W	Vater	Y		N/A
		1 -	1//			lear of W		1	(N)	N/A
		N. /	9			leasuring		- CY	N	N/A
Water Levi	el Finish	N. V					le with MDNR ace Performed	Y		N/A N/A
							ination Norma		2 N	N/A
Name (ME	C Field Samp	ler): Rvan (Orthall and R	ick Elgin			Calibration N		A	N/A
,,,,,		/	150				ment Needed	Υ	(A)	N/A
		/ /	1/1/1	1=	- Aı	ny deviat	ions from SAP	Υ	(N)	N/A
Sampler Si	gnature				Se	diment 1	Thickness Chec	cked Y	(N)	N/A
		/<								
	Data: Average	e of sampli				-				
Constitu	ent	. %	Units	MW- 6A	MW-7	-	-			
pH	Camalanatana a		S.U.	6.87	6.12	+				
	Conductance		umhos/cm ft	1.601	2.699	+				
Total We	GW Depth		ft	7.28	3.04	-				
	GW Depth GW Drop		ft	7.20	3.04	-				
	Volumes									
	ged Amount)		mL	800	800					

Asbury Landfill and Pond Groundwater Sampling Events Supplementary Field notes May 11, 12 and 13, 2020

On May 11, 2020, Ryan Ortbals and Rick Elgin mobilized to the Asbury Landfill to initiate the Groundwater Sampling Event and completed on May 12, 2020 with no major issues other than wet and rainy. In addition, we were able to sample one (1) monitoring well (MW-3) of the Asbury Pond to complete the day on May 12th.

On May 13, 2020 (raining), we initiated the groundwater sampling activities for the remaining monitoring wells at the Asbury Pond. At the first monitoring well (MW-7) for the days' activities, the flow-through meter slid off the front of the truck and struck my foot and landed onto the ground. The jarring of the meter shut it off. We were unable to get the meter turned back on. We changed out the batteries with new batteries but that did not get the meter restarted. We attempted to dry the battery points and assured a good contact between the meter and the batteries. The meter still did not turn back on. We contacted the rental equipment supplier and ordered another meter to be shipped to the MEC office.

Part of the equipment that we took to the Asbury sites was a portable pH meter from our equipment inventory. Continuing forward with the sampling event, the groundwater pH readings taken with the portable pH meter were within the normal range of historical sampling events. We utilized only the pH reading for this sampling event to establish stability prior to sample collection, with the exception of MW-3 that was collected on May 12, 2020.

We returned the malfunctioning flow-through cell and meter once the replacement equipment had arrived at MEC.

Rick Elgin

APPENDIX 4

Analytical Results from Lab

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-105771-1 Client Project/Site: Asbury Ash Pond Sampling Event: Asbury Ash Pond

For:

Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Attn: Mr. Rick Elgin

CathyGartner

Authorized for release by: 6/2/2020 2:06:21 PM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

2

3

E

6

2

11

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	12
QC Sample Results	22
QC Association Summary	26
Chain of Custody	29
Pagaint Chacklists	30

3

4

6

8

9

11

12

Case Narrative

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-105771-1

Job ID: 180-105771-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-105771-1

Receipt

The samples were received on 5/14/2020 9:00 AM; the samples arrived in good condition, properly preserved, and where required, on ice. The temperature of the cooler at receipt time was 4.2° C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-

4

6

10

11

12

11:

Definitions/Glossary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-105771-1

Qualifiers

HPLC/IC

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Description

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

-

_

9

10

12

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-105771-1

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-20
alifornia	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20
lorida	NELAP	E871008	06-30-20
Georgia	State	PA 02-00416	04-30-21
linois	NELAP	004375	06-30-20
ansas	NELAP	E-10350	01-31-21
entucky (UST)	State	162013	04-30-21
Centucky (WW)	State	KY98043	12-31-20
ouisiana	NELAP	04041	06-30-20
Maine	State	PA00164	03-06-22
/linnesota	NELAP	042-999-482	12-31-20
levada	State	PA00164	07-31-20
lew Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-20
lew York	NELAP	11182	04-01-21
lorth Carolina (WW/SW)	State	434	01-01-21
lorth Dakota	State	R-227	04-30-21
Pregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-20 *
exas	NELAP	T104704528	03-31-21
JS Fish & Wildlife	US Federal Programs	058448	07-31-20
JSDA	Federal	P-Soil-01	06-26-22
SDA	US Federal Programs	P330-16-00211	06-26-22
irginia	NELAP	10043	09-15-20
/est Virginia DEP	State	142	02-01-21
Visconsin	State	998027800	08-31-20

Laboratory: Eurofins TestAmerica, Nashville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arizona	State Program	AZ0473	05-05-14 *

2

5

7

10

11

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Client: Midwest Environmental Consultants

Duplicate

Field Blank

Project/Site: Asbury Ash Pond

180-105771-9

180-105771-10

Lab Sample ID **Client Sample ID** Matrix Collected Received Asset ID 180-105771-1 05/13/20 12:20 05/14/20 09:00 MW-2 Water 180-105771-2 MW-3 Water 05/12/20 12:10 05/14/20 09:00 180-105771-3 MW-4 Water 05/13/20 12:05 05/14/20 09:00 180-105771-4 MW-5 Water 05/13/20 11:05 05/14/20 09:00 180-105771-5 MW-5A Water 05/13/20 10:45 05/14/20 09:00 MW-6 05/13/20 11:20 05/14/20 09:00 180-105771-6 Water 180-105771-7 MW-6A Water 05/13/20 10:00 05/14/20 09:00 180-105771-8 MW-7 Water 05/13/20 08:20 05/14/20 09:00

05/13/20 08:30 05/14/20 09:00

05/13/20 11:30 05/14/20 09:00

Water

Water

G

Job ID: 180-105771-1

3

4

7

46

11

12

Method Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-105771-1

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 9040C	рН	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-2 Lab Sample ID: 180-105771-1

Date Collected: 05/13/20 12:20
Date Received: 05/14/20 09:00

Matrix: Water

Job ID: 180-105771-1

Batch Batch Dil Initial Final **Batch** Prepared Method **Prep Type** Type Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA EPA 9056A 317023 Analysis 06/01/20 10:20 MJH TAL PIT Instrument ID: CHIC2100A Total Recoverable 3005A 50 mL 50 mL 316211 05/21/20 17:02 JL TAL PIT Total Recoverable Analysis **EPA 6020A** 316446 05/24/20 01:57 RJR TAL PIT 1 Instrument ID: DORY Total/NA 316815 05/28/20 17:21 PMH TAL PIT Analysis **EPA 9040C** Instrument ID: NOEQUIP TAL PIT Total/NA Analysis SM 2540C 100 mL 100 mL 315655 05/16/20 07:17 AVS Instrument ID: NOEQUIP

Client Sample ID: MW-3
Date Collected: 05/12/20 12:10

Lab Sample ID: 180-105771-2
Matrix: Water

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			317023	06/01/20 10:52	MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total/NA	Analysis	EPA 9056A		5			317023	06/01/20 11:08	MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			316446	05/24/20 02:14	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			316815	05/28/20 17:24	РМН	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	315580	05/15/20 09:22	AVS	TAL PIT

Client Sample ID: MW-4

Date Collected: 05/13/20 12:05

Lab Sample ID: 180-105771-3

Matrix: Water

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			317023	06/01/20 11:23	MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total/NA	Analysis	EPA 9056A		10			317023	06/01/20 11:39	MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			316446	05/24/20 02:18	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			316815	05/28/20 17:26	РМН	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Eurofins TestAmerica, Pittsburgh

6/2/2020

Page 8 of 30

2

3

5

8

9

11

12

Ц

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-5 Lab Sample ID: 180-105771-4

Date Collected: 05/13/20 11:05 **Matrix: Water** Date Received: 05/14/20 09:00

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method EPA 9056A at ID: CHIC2100A	Run	Pactor 1	Initial Amount	Final Amount	Batch Number 316984	Prepared or Analyzed 05/30/20 20:20	Analyst MJH	Lab TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A at ID: DORY		1	50 mL	50 mL	316211 316446	05/21/20 17:02 05/24/20 02:21		TAL PIT TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C at ID: NOEQUIP		1			316815	05/28/20 17:27	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Lab Sample ID: 180-105771-5 **Client Sample ID: MW-5A** Date Collected: 05/13/20 10:45 **Matrix: Water**

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A t ID: CHIC2100A		2.5			316984	05/30/20 22:11	MJH	TAL PIT
Total/NA	Analysis Instrument	EPA 9056A t ID: CHIC2100A		25			316984	05/30/20 22:27	MJH	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrument	EPA 6020A t ID: DORY		1			316446	05/24/20 02:25	RJR	TAL PIT
Total/NA	Analysis Instrument	EPA 9040C t ID: NOEQUIP		1			316815	05/28/20 17:29	PMH	TAL PIT
Total/NA	Analysis Instrument	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Client Sample ID: MW-6 Lab Sample ID: 180-105771-6 Date Collected: 05/13/20 11:20 **Matrix: Water**

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			316984	05/30/20 22:43	MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total/NA	Analysis	EPA 9056A		10			317023	06/01/20 07:57	MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			316446	05/24/20 02:35	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			316815	05/28/20 17:30	РМН	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Eurofins TestAmerica, Pittsburgh

Page 9 of 30

Job ID: 180-105771-1

6/2/2020

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-6A Lab Sample ID: 180-105771-7

Date Collected: 05/13/20 10:00 **Matrix: Water**

Date Received: 05/14/20 09:00

Prep Type Total/NA	Batch Type Analysis Instrumer	Batch Method EPA 9056A at ID: CHIC2100A	Run	Factor 1	Initial Amount	Final Amount	Batch Number 317023	Prepared or Analyzed 06/01/20 08:13	Analyst MJH	Lab TAL PIT
Total/NA	Analysis Instrumer	EPA 9056A at ID: CHIC2100A		10			317023	06/01/20 08:29	MJH	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumer	3005A EPA 6020A nt ID: DORY		1	50 mL	50 mL	316211 316446	05/21/20 17:02 05/24/20 02:39		TAL PIT TAL PIT
Total/NA	Analysis Instrumer	EPA 9040C nt ID: NOEQUIP		1			316815	05/28/20 17:32	PMH	TAL PIT
Total/NA	Analysis Instrumer	SM 2540C at ID: NOEQUIP		1	100 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Client Sample ID: MW-7 Lab Sample ID: 180-105771-8

Date Collected: 05/13/20 08:20 **Matrix: Water**

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A at ID: CHIC2100A		2.5			317023	06/01/20 08:45	MJH	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A at ID: CHIC2100A		25			317023	06/01/20 09:00	MJH	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A at ID: DORY		1			316446	05/24/20 02:42	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C at ID: NOEQUIP		1			316815	05/28/20 17:33	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	50 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Client Sample ID: Duplicate Lab Sample ID: 180-105771-9 Date Collected: 05/13/20 08:30

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		2.5		_	317023	06/01/20 09:16	MJH	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHIC2100A		25			317023	06/01/20 09:32	MJH	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			316446	05/24/20 02:46	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			316815	05/28/20 17:35	РМН	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	50 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Eurofins TestAmerica, Pittsburgh

Page 10 of 30

Job ID: 180-105771-1

Matrix: Water

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: Field Blank Lab Sample ID: 180-105771-10

Date Collected: 05/13/20 11:30 **Matrix: Water**

Date Received: 05/14/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Analysis	Method EPA 9056A	Run	Factor 1	Amount	Amount	Number 316984	or Analyzed 05/30/20 20:04	Analyst MJH	TAL PIT
	Instrumen	t ID: CHIC2100A								
Total Recoverable	Prep	3005A			50 mL	50 mL	316211	05/21/20 17:02	JL	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: DORY		1			316446	05/24/20 02:49	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			316815	05/28/20 17:38	PMH	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	315655	05/16/20 07:17	AVS	TAL PIT

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

JL = James Lyu

Batch Type: Analysis

AVS = Abbey Smith

MJH = Matthew Hartman

PMH = Paloma Hoelzle

RJR = Ron Rosenbaum

Job ID: 180-105771-1

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: MW-2 Lab Sample ID: 180-105771-1

Date Collected: 05/13/20 12:20
Date Received: 05/14/20 09:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		1.0	0.32	mg/L			06/01/20 10:20	1
Fluoride	0.42		0.10	0.026	mg/L			06/01/20 10:20	1
Sulfate	46		1.0	0.38	mg/L			06/01/20 10:20	1
Method: EPA 6020A - Metal	ls (ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	38		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 01:57	1
Boron	0.16		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 01:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	560		10	10	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
nH		HE	0.1	0.1	SU			05/28/20 17:21	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Lab Sample ID: 180-105771-2 **Client Sample ID: MW-3 Matrix: Water**

Date Collected: 05/12/20 12:10 Date Received: 05/14/20 09:00

		nions, Ion Chromatog	ıraphy						
١	Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	57	1.0	0.32	mg/L			06/01/20 10:52	1
	Fluoride	0.17	0.10	0.026	mg/L			06/01/20 10:52	1
	Sulfate	460	5.0	1.9	mg/L			06/01/20 11:08	5

Method: EPA 6020A - Metals (I	CP/MS) - Total Recove	rable						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	100	0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:14	1
Boron	0.10	0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:14	1

General Chemistry Analyte Total Dissolved Solids	Result	Qualifier	RL 10	 Unit mg/L	<u>D</u>	Prepared	Analyzed 05/15/20 09:22	Dil Fac
Analyte pH		Qualifier HF	RL 0.1	Unit SU	<u>D</u>	Prepared	Analyzed 05/28/20 17:24	Dil Fac

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Lab Sample ID: 180-105771-3 Client Sample ID: MW-4

Date Collected: 05/13/20 12:05 Date Received: 05/14/20 09:00

Matrix: Water

Job ID: 180-105771-1

Method: EPA 9056A - Anions	s, Ion Chrom	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.7		1.0	0.32	mg/L			06/01/20 11:23	1
Fluoride	0.12		0.10	0.026	mg/L			06/01/20 11:23	1
Sulfate	540		10	3.8	mg/L			06/01/20 11:39	10
Method: EPA 6020A - Metals	(ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	270		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:18	1
Boron	0.067	J	0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:18	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1500		10	10	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.1	HF	0.1	0.1	SU			05/28/20 17:26	1

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: MW-5 Lab Sample ID: 180-105771-4

Date Collected: 05/13/20 11:05

Matrix: Water

Date Received: 05/14/20 09:00

Method: EPA 9056A - Anions	s, Ion Chrom	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5.8		1.0	0.32	mg/L			05/30/20 20:20	1
Fluoride	0.34		0.10	0.026	mg/L			05/30/20 20:20	1
Sulfate	130		1.0	0.38	mg/L			05/30/20 20:20	1
- Method: EPA 6020A - Metals	(ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	100		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:21	1
Boron	0.27		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:21	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	570		10	10	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.5	HF	0.1	0.1	SU			05/28/20 17:27	1

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: MW-5A Lab Sample ID: 180-105771-5

Date Collected: 05/13/20 10:45

Matrix: Water

Date Received: 05/14/20 09:00

рН

Method: EPA 9056A - Anio	•	•							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	75		2.5	0.80	mg/L			05/30/20 22:11	2.5
Fluoride	0.45		0.25	0.066	mg/L			05/30/20 22:11	2.5
Sulfate	1200		25	9.5	mg/L			05/30/20 22:27	25
- Method: EPA 6020A - Meta	ls (ICP/MS) - T	otal Recove	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	260		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:25	1
Boron	0.91		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2100		20	20	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

0.1

6.9 HF

0.1 SU

9

10

12

05/28/20 17:29

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: MW-6 Lab Sample ID: 180-105771-6

Date Collected: 05/13/20 11:20 Matrix: Water Date Received: 05/14/20 09:00

Method: EPA 9056A - Anior Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14		1.0	0.32	mg/L			05/30/20 22:43	1
Fluoride	0.27		0.10	0.026	mg/L			05/30/20 22:43	1
Sulfate	880		10	3.8	mg/L			06/01/20 07:57	10
Method: EPA 6020A - Metal	s (ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	250		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:35	1
Boron	0.32		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1600		10	10	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.5	HF	0.1	0.1	SU		-	05/28/20 17:30	1

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: MW-6A Lab Sample ID: 180-105771-7

Date Collected: 05/13/20 10:00 Matrix: Water

Date Received: 05/14/20 09:00

Method: EPA 9056A - Anions Analyte	•	atograpny Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19		1.0	0.32	mg/L			06/01/20 08:13	1
Fluoride	0.34		0.10	0.026	mg/L			06/01/20 08:13	1
Sulfate	710		10	3.8	mg/L			06/01/20 08:29	10
Method: EPA 6020A - Metals	(ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	190		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:39	1
Boron	0.42		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:39	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1400		10	10	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.4	HF	0.1	0.1	SU			05/28/20 17:32	1

6

<u>R</u>

9

10

11

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Lab Sample ID: 180-105771-8 **Client Sample ID: MW-7**

Date Collected: 05/13/20 08:20 Date Received: 05/14/20 09:00

Matrix: Water

Job ID: 180-105771-1

Method: EPA 9056A - Anion Analyte	•	atograpny Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	44		2.5	0.80	mg/L			06/01/20 08:45	2.5
Fluoride	0.24	J	0.25	0.066	mg/L			06/01/20 08:45	2.5
Sulfate	1600		25	9.5	mg/L			06/01/20 09:00	25
- Method: EPA 6020A - Metal	ls (ICP/MS) - T	otal Recove	erable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	480		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:42	1
Boron	0.26		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2800		20	20	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
н	6.6	HE	0.1	0.1	SU			05/28/20 17:33	1

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: Duplicate Lab Sample ID: 180-105771-9

Date Collected: 05/13/20 08:30 Matrix: Water

Date Received: 05/14/20 09:00

Method: EPA 9056A - Anions Analyte	•	atography Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							Frepareu		
Chloride	41		2.5	0.80	mg/L			06/01/20 09:16	2.5
Fluoride	0.27		0.25	0.066	mg/L			06/01/20 09:16	2.5
Sulfate	1600		25	9.5	mg/L			06/01/20 09:32	25
- Method: EPA 6020A - Metals	(ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	500		0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:46	1
Boron	0.27		0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2700		20	20	mg/L			05/16/20 07:17	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.6	HF	0.1	0.1	SU			05/28/20 17:35	1

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Client Sample ID: Field Blank

Lab Sample ID: 180-105771-10

Date Collected: 05/13/20 11:30 Lab Gample 1B. 100-103771-10

Date Collected: 05/13/20 11:30 Matrix: Water Date Received: 05/14/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.3		1.0	0.32	mg/L			05/30/20 20:04	
Fluoride	0.67		0.10	0.026	mg/L			05/30/20 20:04	
Sulfate	0.41	J	1.0	0.38	mg/L			05/30/20 20:04	,
Method: EPA 6020A - Meta	ls (ICP/MS) - T	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	0.36	J	0.50	0.13	mg/L		05/21/20 17:02	05/24/20 02:49	
Boron	0.054	J	0.080	0.039	mg/L		05/21/20 17:02	05/24/20 02:49	•
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	10		10	10	mg/L			05/16/20 07:17	-
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.7	HE	0.1	0.1	SU			05/28/20 17:38	

_

Л

5

7

8

9

10

12

Project/Site: Asbury Ash Pond

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-316984/45

Matrix: Water

Analysis Batch: 316984

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 1.0 0.32 mg/L 05/30/20 19:49 ND Fluoride 0.10 0.026 mg/L 05/30/20 19:49 ND Sulfate 05/30/20 19:49 ND 1.0 0.38 mg/L

Lab Sample ID: LCS 180-316984/44

Matrix: Water

Analysis Batch: 316984

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	52.3		mg/L		105	80 - 120	
Fluoride	2.50	2.60		mg/L		104	80 - 120	
Sulfate	50.0	48.2		mg/L		96	80 - 120	

Lab Sample ID: 180-106396-D-1 MS

Matrix: Water

Analysis Batch: 316984

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Type: Total/NA

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1.9		50.0	47.9		mg/L		92	80 - 120	
Fluoride	0.21		2.50	2.50		mg/L		92	80 - 120	
Sulfate	26		50.0	66.5		mg/L		82	80 - 120	

Lab Sample ID: 180-106396-D-1 MSD

Matrix: Water

Analysis Batch: 316984

7 maryone Datem Crocci	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.9		50.0	47.8		mg/L		92	80 - 120	0	15
Fluoride	0.21		2.50	2.46		mg/L		90	80 - 120	2	15
Sulfate	26		50.0	65.7		mg/L		80	80 - 120	1	15

Lab Sample ID: MB 180-317023/6

Matrix: Water

Analysis Batch: 317023

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

96

Client Sample ID: Matrix Spike Duplicate

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.0	0.32	mg/L			06/01/20 06:38	1
Fluoride	ND		0.10	0.026	mg/L			06/01/20 06:38	1
Sulfate	ND		1.0	0.38	mg/L			06/01/20 06:38	1

Lab Sample ID: LCS 180-317023/5

Sulfate

Matrix: Water							•	Prep Type: Total/NA
Analysis Batch: 317023								
_	S	pike	LCS	LCS				%Rec.
Analyte	Ad	dded	Result	Qualifier	Unit	D	%Rec	Limits
Chloride		50.0	51.8		mg/L		104	80 - 120
Fluoride		2.50	2.60		mg/L		104	80 - 120

48.2

mg/L

Eurofins TestAmerica, Pittsburgh

6/2/2020

80 - 120

Page 22 of 30

50.0

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Method: EPA 9056A - Anions, Ion Chromatography (Continued)

ND

Lab Sample ID: 180-105952-C-1 MS Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 317023

Alialysis Datcil. 317023										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	3.8		50.0	53.4		mg/L		99	80 - 120	
Fluoride	0.076	J	2.50	2.59		mg/L		100	80 - 120	
Sulfate	9.8		50.0	55.5		mg/L		91	80 - 120	
	Analyte Chloride Fluoride	Analyte Result Chloride 3.8 Fluoride 0.076	Analyte Result Chloride Qualifier 3.8 Fluoride 0.076 J	Analyte Result Chloride Result Result Chloride Sample Qualifier Added Solution Added Solution Fluoride 0.076 J 2.50	Analyte Result Chloride Result Result Chloride Qualifier Added Sesult Sessilt Sesult Sesult Sesult Sesult Sesult Sesult Sesult Sesult Sessilt Sesult Sesult Sessilt Sessil	Analyte Result Chloride Qualifier 3.8 Manual Suppose of Chloride Manual Suppose of Chloride <t< td=""><td>Analyte Result Chloride Result Result Chloride Sample Result Qualifier Spike Added Added Added Result Solution MS Unit Mg/L Fluoride 3.8 50.0 53.4 mg/L Fluoride 0.076 J 2.50 2.59 mg/L</td><td>Analyte Result Chloride Qualifier 3.8 Added Solution Result MS MS</td><td>Analyte Result Chloride Qualifier 3.8 Spike Added Spike Added Spike Added Chloride MS MS Unit Might Property Might Property</td><td>Analyte Result Chloride Result Result Chloride Sample Qualifier Spike Added Added Result Spike Added Result Chloride MS MS Unit D MS MS MS</td></t<>	Analyte Result Chloride Result Result Chloride Sample Result Qualifier Spike Added Added Added Result Solution MS Unit Mg/L Fluoride 3.8 50.0 53.4 mg/L Fluoride 0.076 J 2.50 2.59 mg/L	Analyte Result Chloride Qualifier 3.8 Added Solution Result MS MS	Analyte Result Chloride Qualifier 3.8 Spike Added Spike Added Spike Added Chloride MS MS Unit Might Property	Analyte Result Chloride Result Result Chloride Sample Qualifier Spike Added Added Result Spike Added Result Chloride MS MS Unit D MS MS MS

Lab Sample ID: 180-105952-C-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 317023

Analysis Baton, 017020											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	3.8		50.0	53.0		mg/L		98	80 - 120	1	15
Fluoride	0.076	J	2.50	2.60		mg/L		101	80 - 120	0	15
Sulfate	9.8		50.0	55.3		mg/L		91	80 - 120	0	15

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-316211/1-A

Matrix: Water

Analysis Batch: 316446

Prep Batch: 316211 MB MB Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Calcium ND 0.50 0.13 mg/L 05/21/20 17:02 05/24/20 01:36

0.080

0.039 mg/L

Lab Sample ID: LCS 180-316211/2-A

Matrix: Water

Boron

Analysis Batch: 316446	Spike	LCS	LCS				Prep Batch: 316211 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Calcium	25.0	27.6	-	mg/L		111	80 - 120
Boron	1.25	1.17		mg/L		94	80 - 120

Lab Sample ID: 180-105771-1 MS Client Sample ID: MW-2 **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 316446 Prep Batch: 316211**

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	38		25.0	67.4		mg/L		116	75 - 125	
Boron	0.16		1.25	1.27		mg/L		89	75 - 125	

Lab Sample ID: 180-105771-1 MSD Client Sample ID: MW-2 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 316446 **Prep Batch: 316211** Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Calcium 38 25.0 65.7 mg/L 109 75 - 125 3 20 Boron 0.16 1.25 1.30 mg/L 91 75 - 125 2 20

Eurofins TestAmerica, Pittsburgh

Client Sample ID: Method Blank

05/21/20 17:02 05/24/20 01:36

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Type: Total Recoverable

Spike

Added

7.00

Client Sample ID: Lab Control Sample

%Rec

Prepared

%Rec

85

100

%Rec.

Limits

99 - 101

Prep Type: Total/NA

Client Sample ID: MW-2

Client Sample ID: Field Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Client Sample ID: Duplicate

Analyzed

05/15/20 09:22

Prep Type: Total/NA

RPD

0.4

RPD

0.9

RPD

0.3

RPD

Limit

RPD

Limit

Dil Fac

RPD

Limit

Dil Fac

2

10

Unit

SU

Unit

SU

Unit

SU

Unit

mg/L

Unit

mg/L

LCS LCS

DU DU

DU DU

6.6

RI

10

Spike

Added

269

Result Qualifier

MDL Unit

LCS LCS

DU DU

254

Result Qualifier

228

Result Qualifier

10 mg/L

6.7

Result Qualifier

7.0

Result Qualifier

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Method: EPA 9040C - pH

Lab Sample ID: LCS 180-316815/1

Matrix: Water

Analysis Batch: 316815

Analyte

Lab Sample ID: 180-105771-1 DU

Matrix: Water

рН

Analysis Batch: 316815

Sample Sample Analyte

Result Qualifier 6.7 HF рН

Lab Sample ID: 180-105771-10 DU **Matrix: Water**

Analysis Batch: 316815

Analyte pН

Lab Sample ID: MB 180-315580/2

Method: SM 2540C - Solids, Total Dissolved (TDS)

Sample Sample

6.7 HF

Result Qualifier

MB MB

Matrix: Water

Analysis Batch: 315580

Analyte

Result Qualifier ND

Total Dissolved Solids

Lab Sample ID: LCS 180-315580/1

Matrix: Water

Analysis Batch: 315580

Analyte

Total Dissolved Solids

Lab Sample ID: 180-105734-B-1 DU

Matrix: Water

Analysis Batch: 315580

Analyte Total Dissolved Solids

Lab Sample ID: MB 180-315655/2 **Matrix: Water**

Analysis Batch: 315655

Total Dissolved Solids

MR MR

Sample Sample

250

Result Qualifier

Result Qualifier $\overline{\mathsf{ND}}$

RL 10 MDL Unit 10 mg/L

Prepared

Analyzed

05/16/20 07:17

Prep Type: Total/NA

Eurofins TestAmerica, Pittsburgh

QC Sample Results

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 180-315655/1 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 315655

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 192 222 mg/L 116 80 - 120

Client Sample ID: MW-2 Lab Sample ID: 180-105771-1 DU **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 315655

RPD DU DU Sample Sample Result Qualifier Result Qualifier RPD Unit D Limit Total Dissolved Solids 560 0.5 562 mg/L

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-105771-1

HPLC/IC

Analysis Batch: 316984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-4	MW-5	Total/NA	Water	EPA 9056A	
180-105771-5	MW-5A	Total/NA	Water	EPA 9056A	
180-105771-5	MW-5A	Total/NA	Water	EPA 9056A	
180-105771-6	MW-6	Total/NA	Water	EPA 9056A	
180-105771-10	Field Blank	Total/NA	Water	EPA 9056A	
MB 180-316984/45	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-316984/44	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-106396-D-1 MS	Matrix Spike	Total/NA	Water	EPA 9056A	
180-106396-D-1 MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 9056A	

Analysis Batch: 317023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-1	MW-2	Total/NA	Water	EPA 9056A	
180-105771-2	MW-3	Total/NA	Water	EPA 9056A	
180-105771-2	MW-3	Total/NA	Water	EPA 9056A	
180-105771-3	MW-4	Total/NA	Water	EPA 9056A	
180-105771-3	MW-4	Total/NA	Water	EPA 9056A	
180-105771-6	MW-6	Total/NA	Water	EPA 9056A	
180-105771-7	MW-6A	Total/NA	Water	EPA 9056A	
180-105771-7	MW-6A	Total/NA	Water	EPA 9056A	
180-105771-8	MW-7	Total/NA	Water	EPA 9056A	
180-105771-8	MW-7	Total/NA	Water	EPA 9056A	
180-105771-9	Duplicate	Total/NA	Water	EPA 9056A	
180-105771-9	Duplicate	Total/NA	Water	EPA 9056A	
MB 180-317023/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-317023/5	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-105952-C-1 MS	Matrix Spike	Total/NA	Water	EPA 9056A	
180-105952-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 316211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-1	MW-2	Total Recoverable	Water	3005A	-
180-105771-2	MW-3	Total Recoverable	Water	3005A	
180-105771-3	MW-4	Total Recoverable	Water	3005A	
180-105771-4	MW-5	Total Recoverable	Water	3005A	
180-105771-5	MW-5A	Total Recoverable	Water	3005A	
180-105771-6	MW-6	Total Recoverable	Water	3005A	
180-105771-7	MW-6A	Total Recoverable	Water	3005A	
180-105771-8	MW-7	Total Recoverable	Water	3005A	
180-105771-9	Duplicate	Total Recoverable	Water	3005A	
180-105771-10	Field Blank	Total Recoverable	Water	3005A	
MB 180-316211/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-316211/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
180-105771-1 MS	MW-2	Total Recoverable	Water	3005A	
180-105771-1 MSD	MW-2	Total Recoverable	Water	3005A	

Analysis Batch: 316446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-1	MW-2	Total Recoverable	Water	EPA 6020A	316211

Eurofins TestAmerica, Pittsburgh

Page 26 of 30

2

3

E

_

8

9

11

12

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-105771-1

Metals (Continued)

Analysis Batch: 316446 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-2	MW-3	Total Recoverable	Water	EPA 6020A	316211
180-105771-3	MW-4	Total Recoverable	Water	EPA 6020A	316211
180-105771-4	MW-5	Total Recoverable	Water	EPA 6020A	316211
180-105771-5	MW-5A	Total Recoverable	Water	EPA 6020A	316211
180-105771-6	MW-6	Total Recoverable	Water	EPA 6020A	316211
180-105771-7	MW-6A	Total Recoverable	Water	EPA 6020A	316211
180-105771-8	MW-7	Total Recoverable	Water	EPA 6020A	316211
180-105771-9	Duplicate	Total Recoverable	Water	EPA 6020A	316211
180-105771-10	Field Blank	Total Recoverable	Water	EPA 6020A	316211
MB 180-316211/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	316211
LCS 180-316211/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	316211
180-105771-1 MS	MW-2	Total Recoverable	Water	EPA 6020A	316211
180-105771-1 MSD	MW-2	Total Recoverable	Water	EPA 6020A	316211

General Chemistry

Analysis Batch: 315580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-2	MW-3	Total/NA	Water	SM 2540C	
MB 180-315580/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-315580/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-105734-B-1 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 315655

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-1	MW-2	Total/NA	Water	SM 2540C	
180-105771-3	MW-4	Total/NA	Water	SM 2540C	
180-105771-4	MW-5	Total/NA	Water	SM 2540C	
180-105771-5	MW-5A	Total/NA	Water	SM 2540C	
180-105771-6	MW-6	Total/NA	Water	SM 2540C	
180-105771-7	MW-6A	Total/NA	Water	SM 2540C	
180-105771-8	MW-7	Total/NA	Water	SM 2540C	
180-105771-9	Duplicate	Total/NA	Water	SM 2540C	
180-105771-10	Field Blank	Total/NA	Water	SM 2540C	
MB 180-315655/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-315655/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-105771-1 DU	MW-2	Total/NA	Water	SM 2540C	

Analysis Batch: 316815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-1	MW-2	Total/NA	Water	EPA 9040C	
180-105771-2	MW-3	Total/NA	Water	EPA 9040C	
180-105771-3	MW-4	Total/NA	Water	EPA 9040C	
180-105771-4	MW-5	Total/NA	Water	EPA 9040C	
180-105771-5	MW-5A	Total/NA	Water	EPA 9040C	
180-105771-6	MW-6	Total/NA	Water	EPA 9040C	
180-105771-7	MW-6A	Total/NA	Water	EPA 9040C	
180-105771-8	MW-7	Total/NA	Water	EPA 9040C	
180-105771-9	Duplicate	Total/NA	Water	EPA 9040C	
180-105771-10	Field Blank	Total/NA	Water	EPA 9040C	
LCS 180-316815/1	Lab Control Sample	Total/NA	Water	EPA 9040C	

Eurofins TestAmerica, Pittsburgh

Page 27 of 30 6/2/2020

_

5

7

40

11

12

QC Association Summary

Client: Midwest Environmental Consultants

Job ID: 180-105771-1

Project/Site: Asbury Ash Pond

General Chemistry (Continued)

Analysis Batch: 316815 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-105771-1 DU	MW-2	Total/NA	Water	EPA 9040C	
180-105771-10 DU	Field Blank	Total/NA	Water	EPA 9040C	

1

3

4

_

6

8

9

11

12

Chain of Custody Record

ent Information Ga				Lab PM: Gartne	M: ner, Cathy					racking No(s)	:	COC №: 490-52767-15725.1		
Client Contact: Mr. Rick Elgin	Phone: 573-636-9454 E-Ma cath				gartne	r@testam	ericainc	.com				Page: Page 1 of 1		
Company: Midwest Environmental Consultants									Requeste	d		Job#:		
Address: 2009 East McCarty Street Suite 2	ed:							T T	TT		Preservation Codes:			
City:	TAT Requested (da	T Requested (days):										A - HCL M - Hexane B - NaOH N - None		
Jefferson City State, Zip:							8					C - Zn Acetate O - AsNaO2 D - Nitric Acid P - Na2O4S		
MO, 65101 Phone:	PO #:						Solids				119	E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2O3 G - Amchlor S - H2SO4		
573-636-9454(Tel)	Purchase Order not required				(ON	Sulfate	ved	_				H - Ascorbic Acid T - TSP Dodecahydrate I - Ice U - Acetone		
Email: relgin@mecpc.com	WO #:			20	Sample (Yes or ISD (Yes or No)	Fluoride, Su	isso	Boron			90	J DI Water		
Project Name: Asbury Ash Pond	Project #: 49010011			No.			talD	and E		,				
Site:	SSOW#:		ampl			9, FL	- Total Dissolved	S						
	Sample Ma				MS/M	Chloride,	2540C_Calcd	tals -				IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		
			Туре (W=water, S=solid,	orm f	Ch.	ပ္ပ	6020 Metals		-	180-105771	Chain of Custody		
Sample Identification	Sample Date	Sample Time	(C=comp, o G=grab) BT=1	=waste/oil, issue, A=Air	Perform	9026	254(602(1 2	Special Instructions/Note:		
	><	><	Preservation	1		N	N	D						
mw-2 5-	13 -20	12:20	PGE	cw	Ш	X	X	X				Field pH: 6.77		
MW-3	121	12:10	P)				1					Field pH: 5,7 }		
MW-4	13	2:05										Field pH: 6.49		
mu/-5	13	11:09						П				Field pH: 6.59		
mw-5A	13	10:48						П				Field pH: 6.38		
Mul-6	13	11:20										Field pH: / 33		
m10 - 6A	13/	10:00		11			\Box	Π				Field pH: //3		
1111/-7	131	8:20		11			$\exists t$	11				Field pH: (30)		
NO (MW-7)	13	8:30		V	T		1/					Field pH:		
Field Blank	12	11:30		/	T		1	W				Field pH:		
FIELD DIEM	10	100			+		1		+++	\top		Field pH:		
Passible Hazard Identification					Sai	nple Disp	osal (A fee m	ay be assess	ed if samp	les are retail	ned longer than 1 month)		
	son B Unk	nown	Radiological				To Clie		Dispose			chive For Months		
Deliverable Requested: I, II, III, IV, Other (specify)					Spe	ecial Instru	uctions/0	QC Req	uirements: 60	20A/6010C	: - Sb,As,Ba,I	Be,B,Cd,Ca,Cr,Co,Pb,,Mo, Li		
Empty Kit Relinquished by:	In	Date:	Io-		Time:	.		-	М	ethod of Ship				
Relinquished by:	9-13-20) 12	45	npany	2	Received b	6	edl	X	Dat	5-32	0 12:45 Company dex		
Relinquished by:	Date/Time:		Cor	mpany		Received b	1/1	ully	Wate	To Dat	e/Time:	19-20 Company After		
Relinquished by:	Date/Time:		Cor	npany		Received b					e/Time:	9-100 Company		
Custody Seals Intact: Custody Seal No.:				and the second second second		Cooler Tem	nperature(s) °C and	Other Remarks:					

Client: Midwest Environmental Consultants

Job Number: 180-105771-1

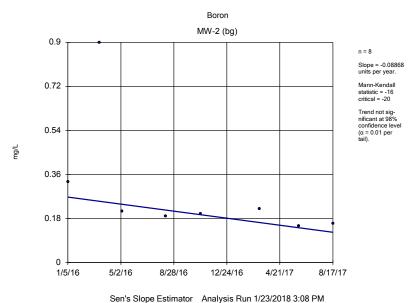
Login Number: 105771 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

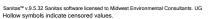
Creator: Watson, Debbie

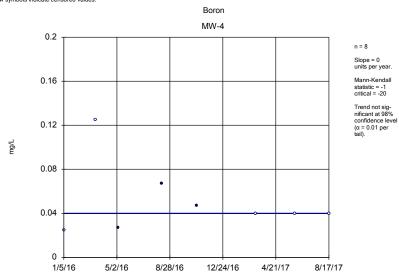
ordator. Watson, Debbic		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

 ${\bf Eurofins\ TestAmerica,\ Pittsburgh}$

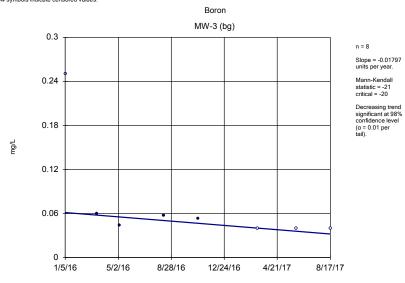

APPENDIX 5

Statistical Analysis

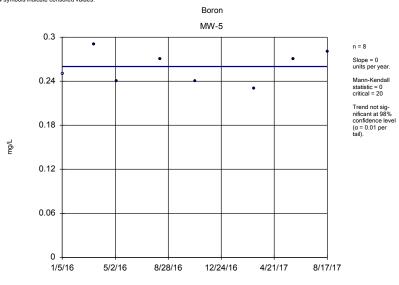



Sanitas[™] Output – Background

Trending Analysis

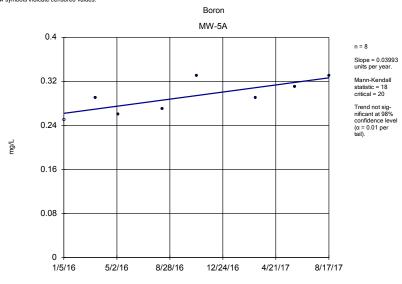

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

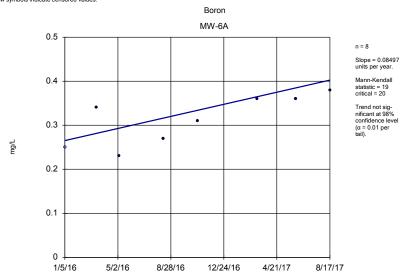
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

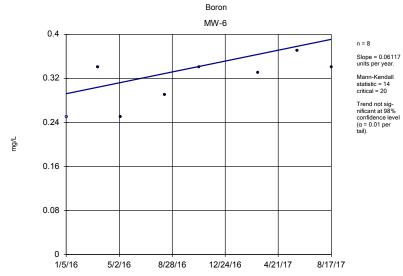

Sanitas ** v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

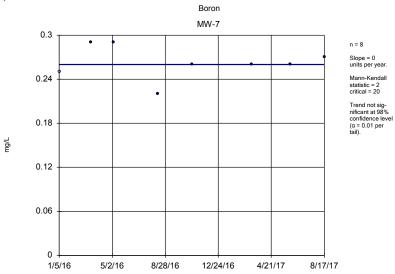
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

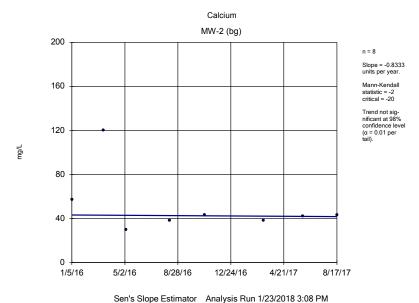
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

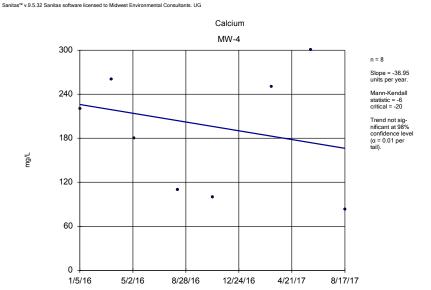
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

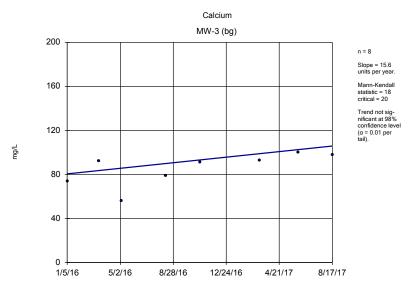

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

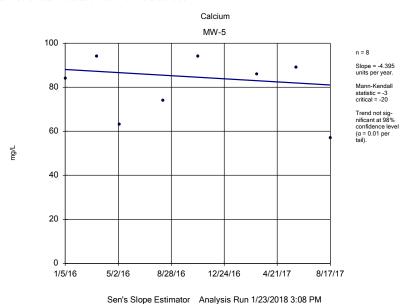


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

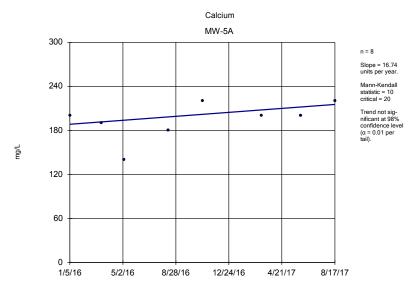
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

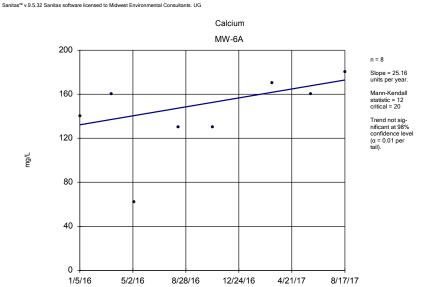

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

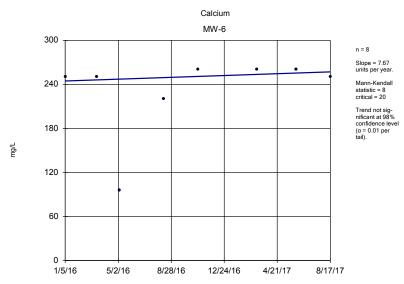


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

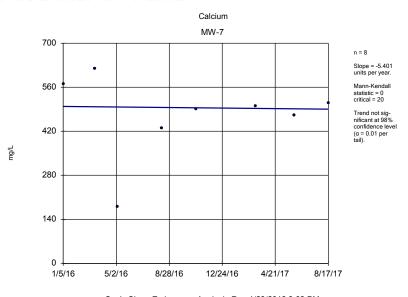


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

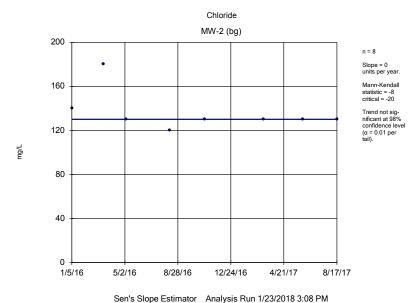

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

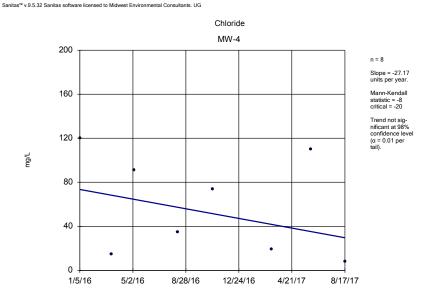
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

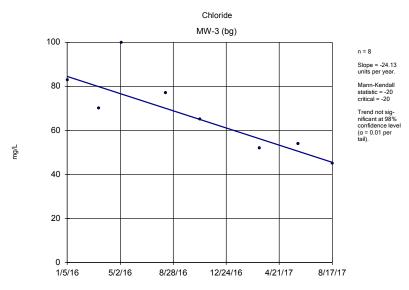

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

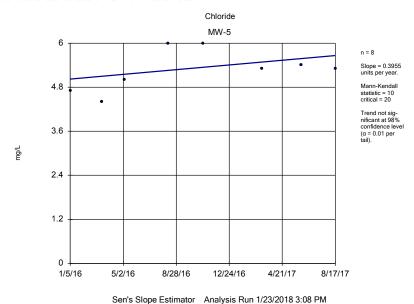


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

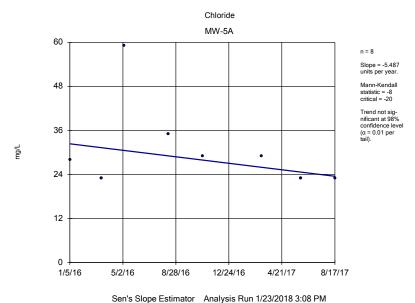
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



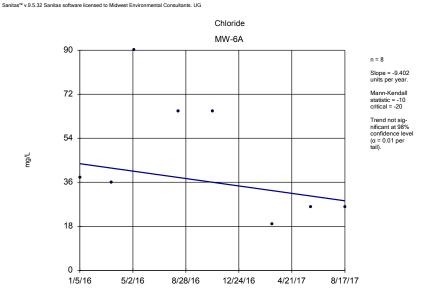
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

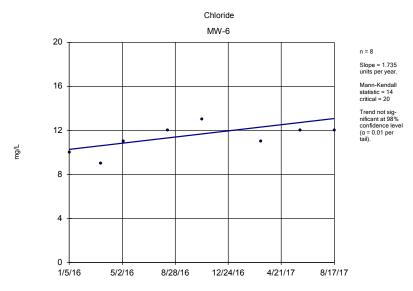
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



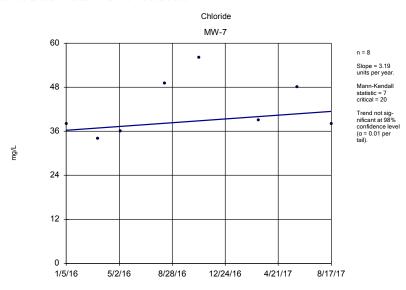
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

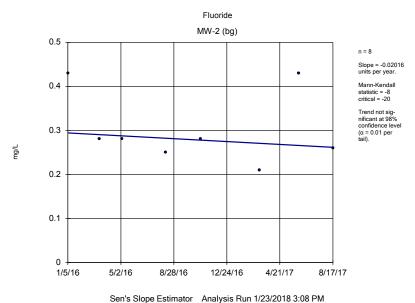
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



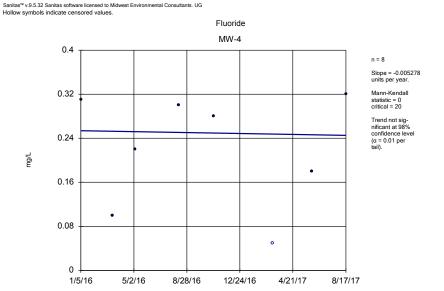
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

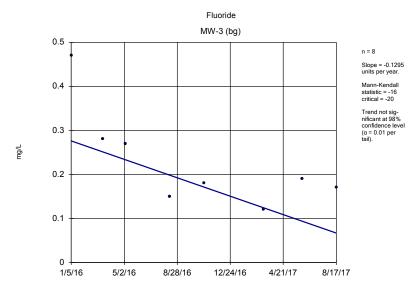

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

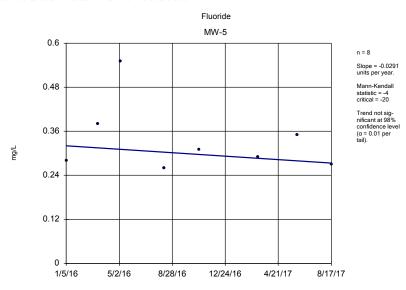


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

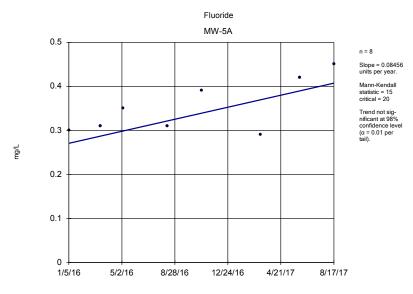
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

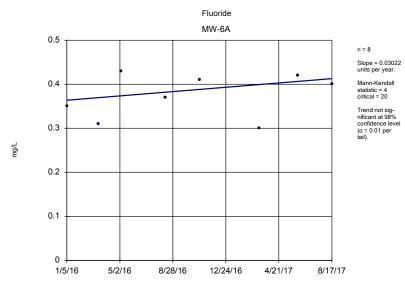

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

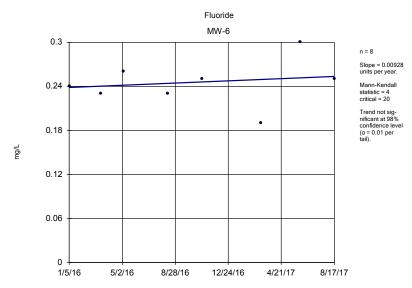
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

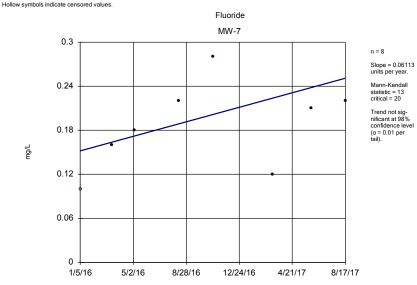
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

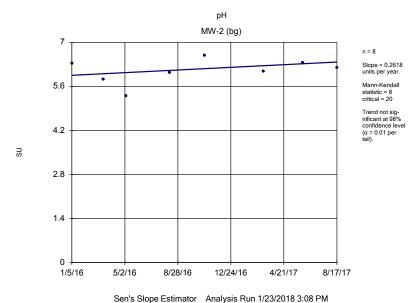

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

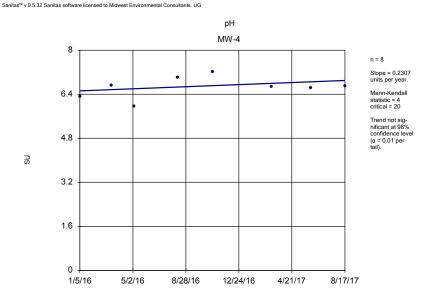
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

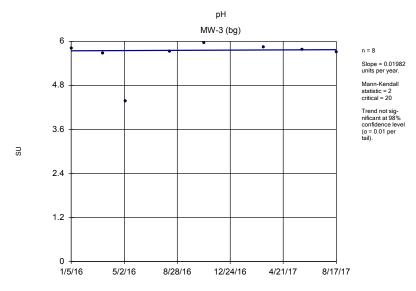

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

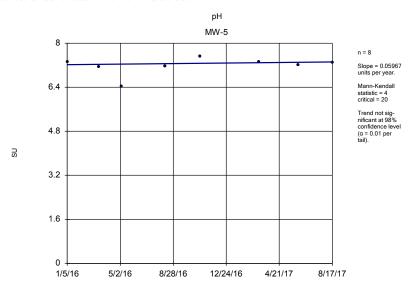


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

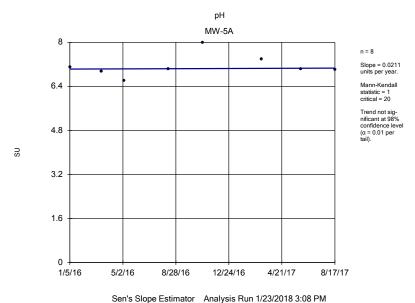
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



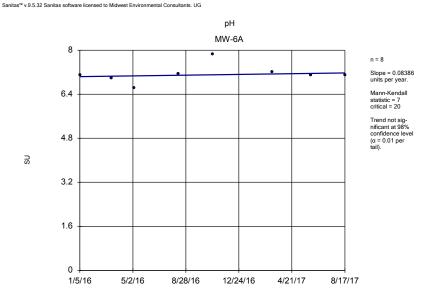
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

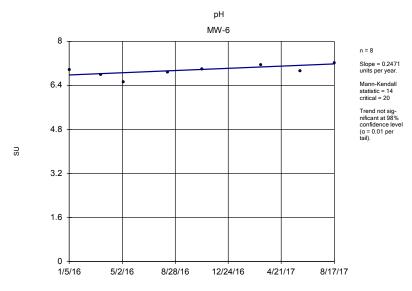

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



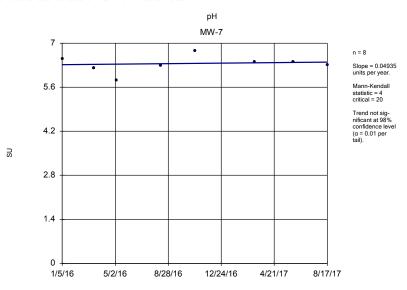
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

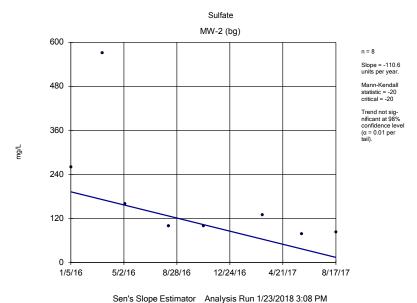


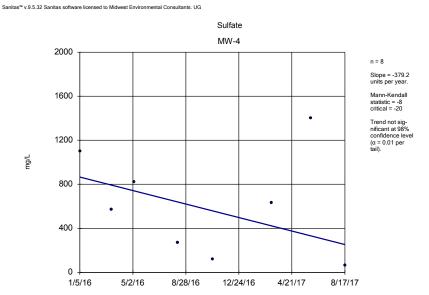
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

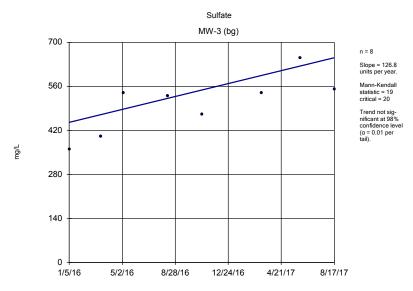
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

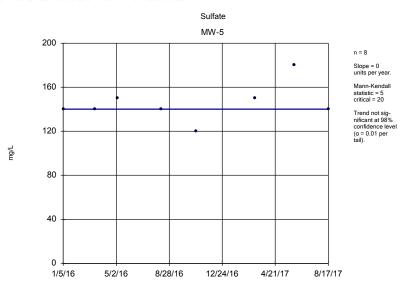


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

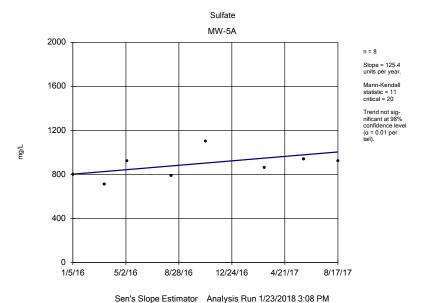
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



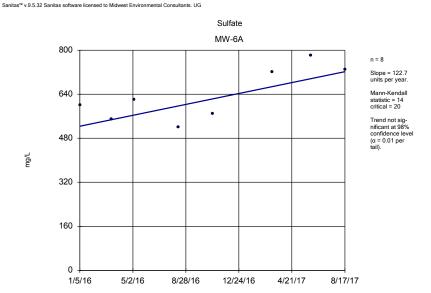
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

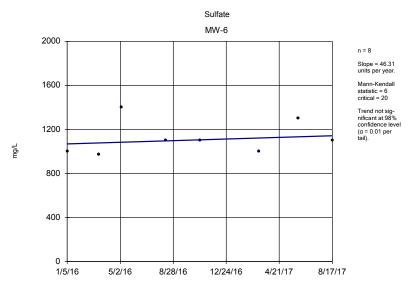
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



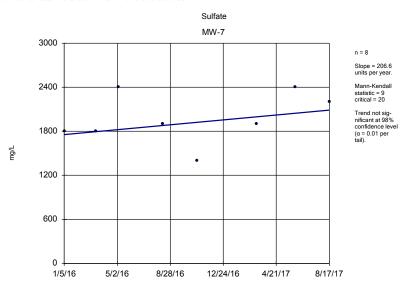
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

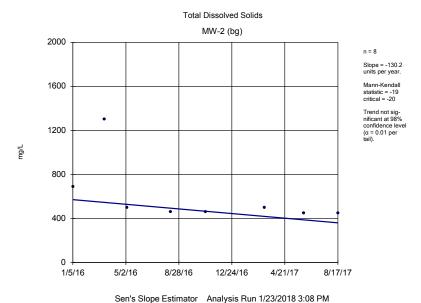
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM



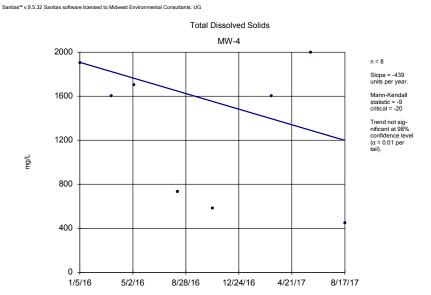
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

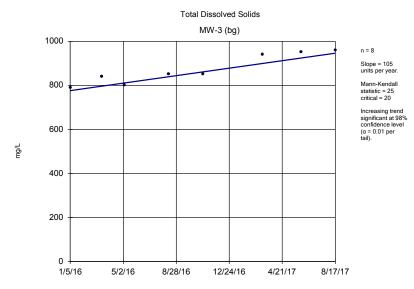

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

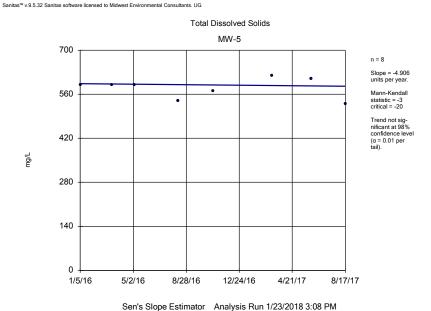


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

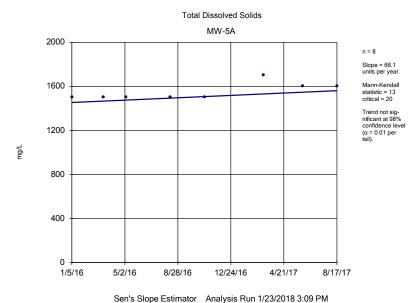
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



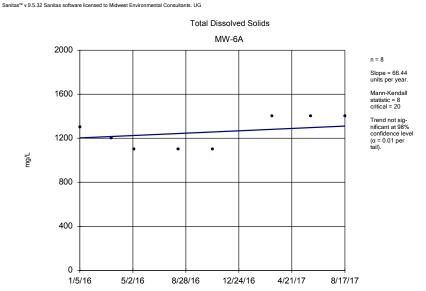
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

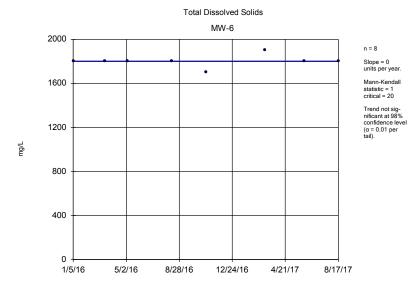
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



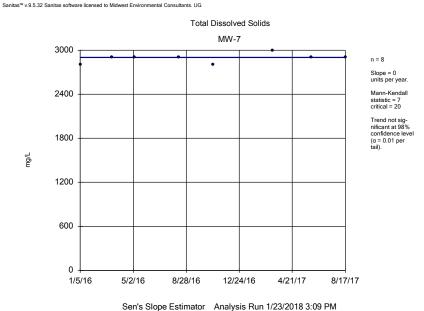
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



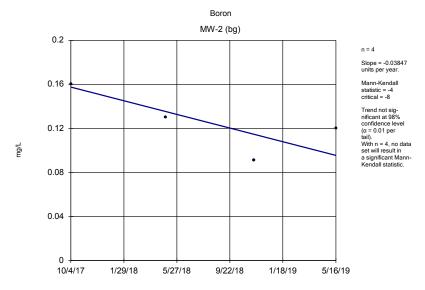
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

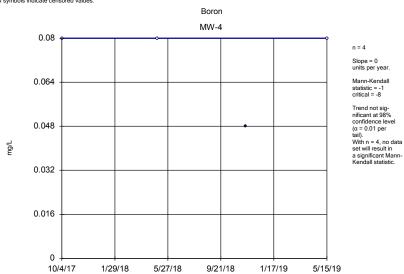
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Trend Test

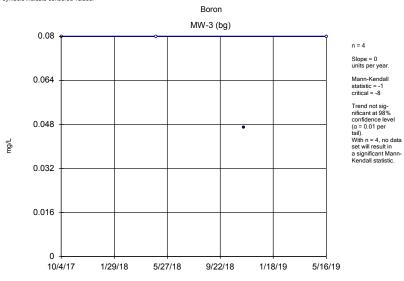
	The Empire District	Client: Midwest Environmental Consultants			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only						Printed 1/23/2018, 3:10 PM		
<u>Constituent</u>		Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP	
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP	
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP	
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP	
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP	
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP	
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a	n/a	0.02	NP	
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP	

Trend Test

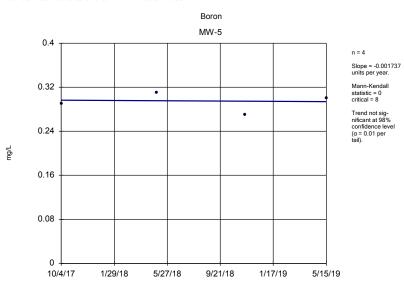

	The Empire District	Client: Midwest Environmental Consultants			Data: Asbury CCR Impoundments GW Baseline Database - App 3 only						Printed 1/23/2018, 3:10 PM		
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP	
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP	

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

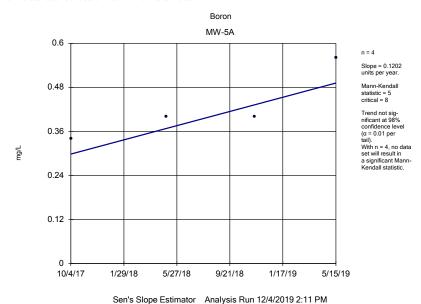
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



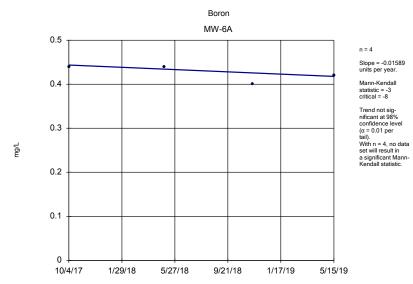
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

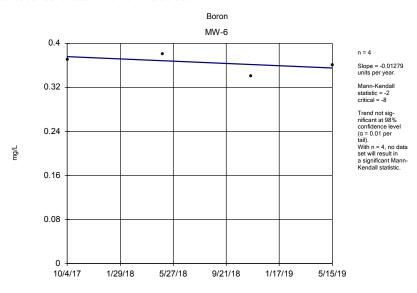
Sanitas $^{\text{™}}$ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

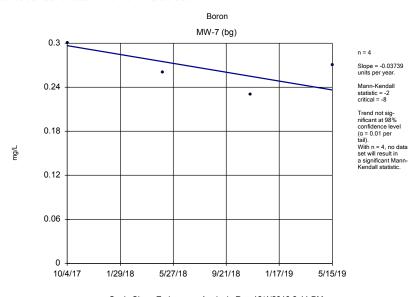

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

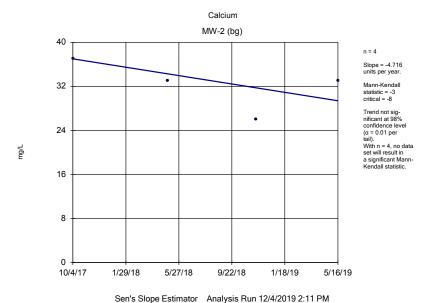

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

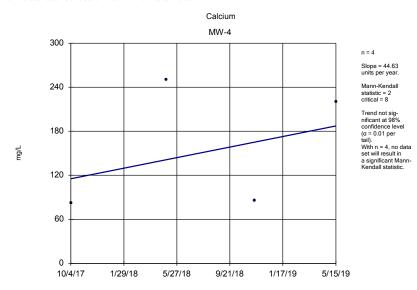

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

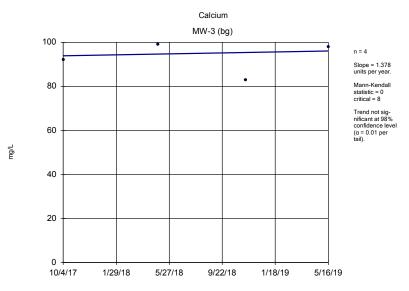
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

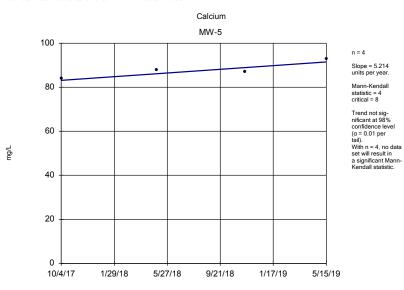

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

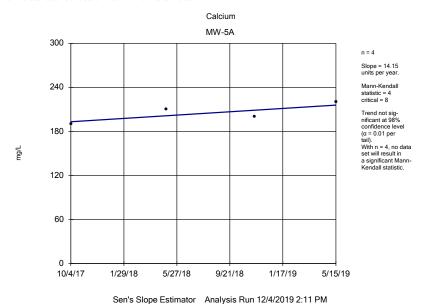

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

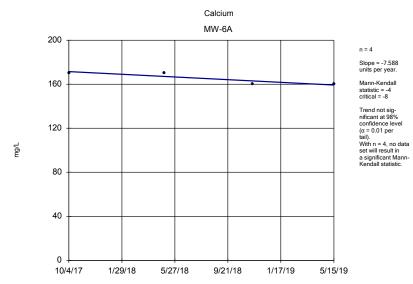

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

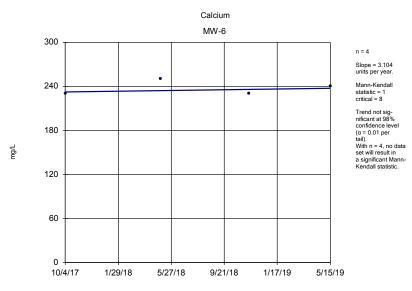
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

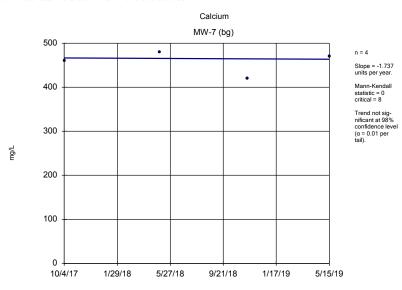

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

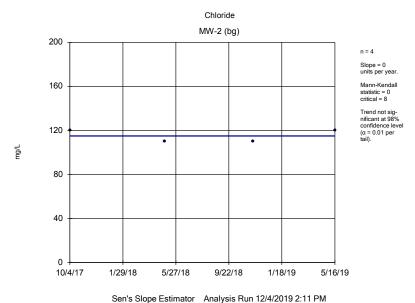

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

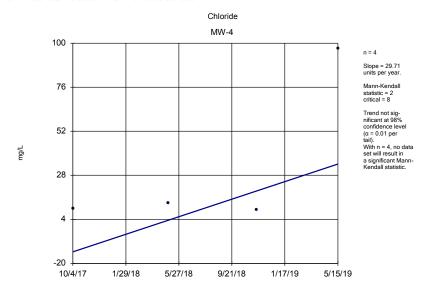

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

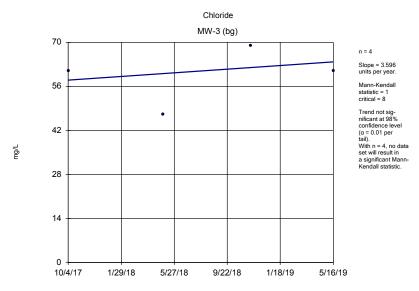
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

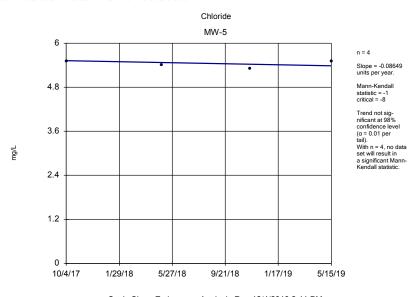

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

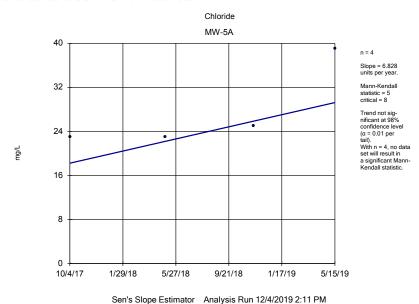

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

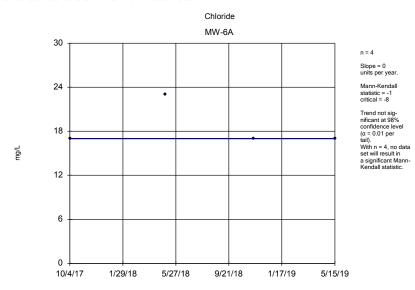

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

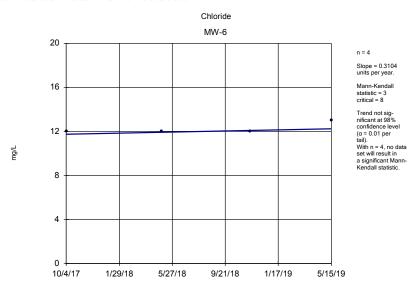
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

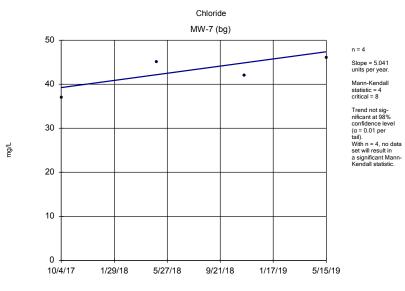

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

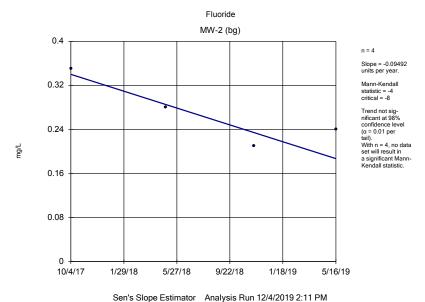

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

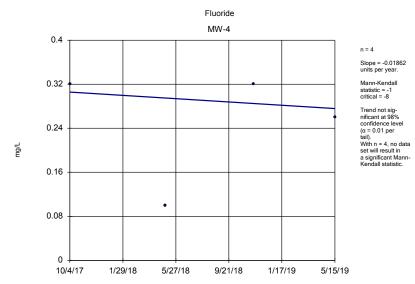

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

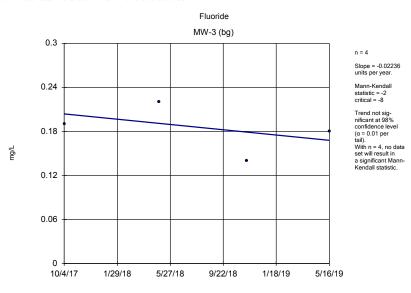
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

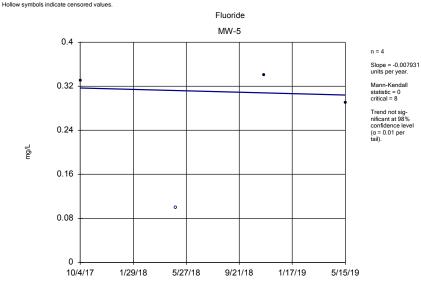

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

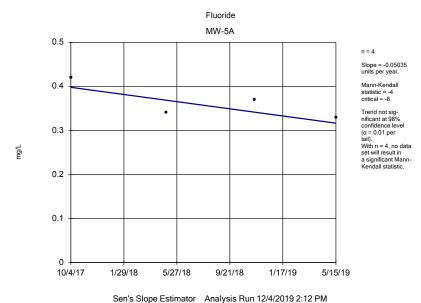

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

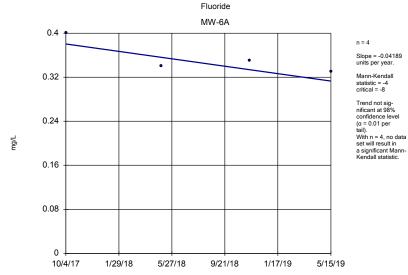

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

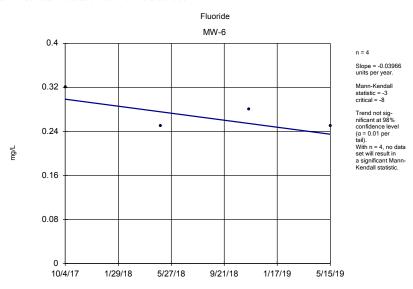
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

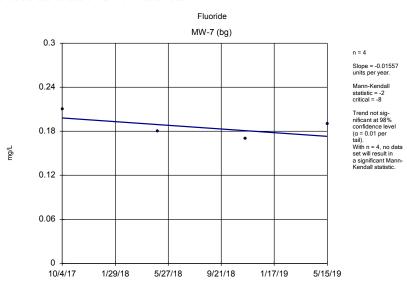

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

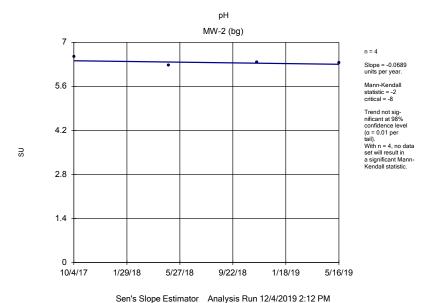

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

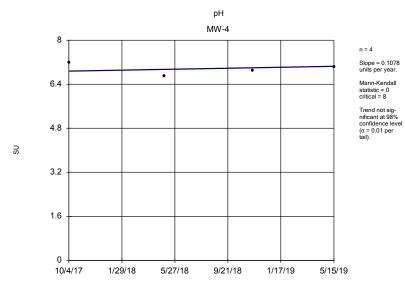

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

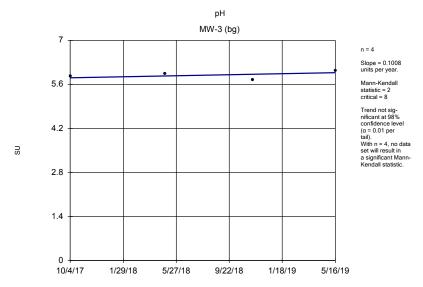

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

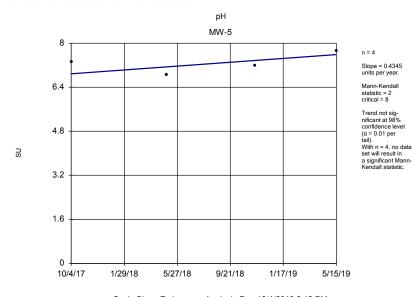


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

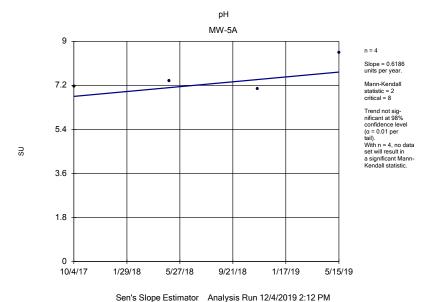
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



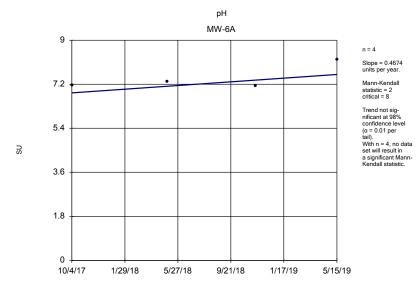
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

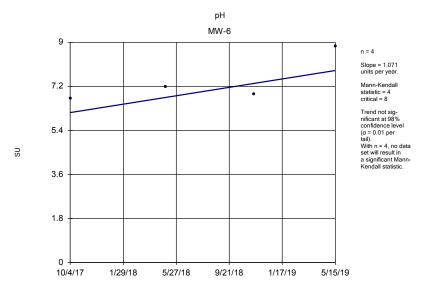

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

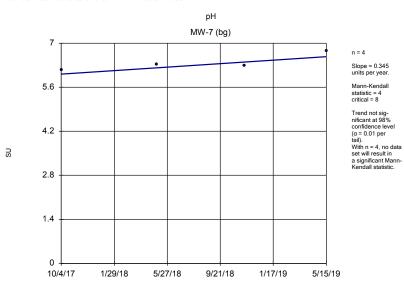


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

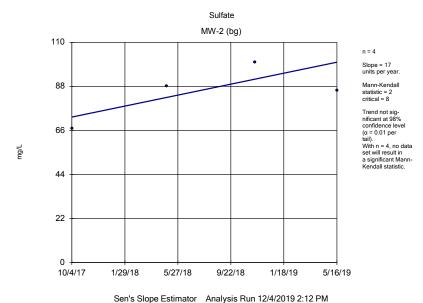
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



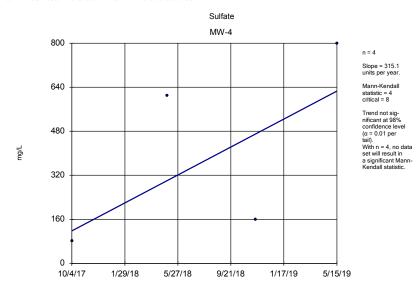
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

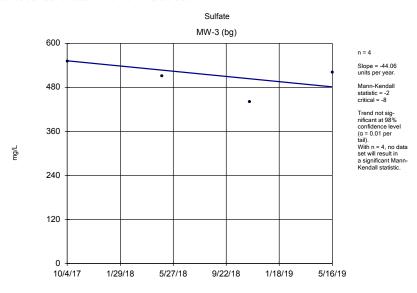
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

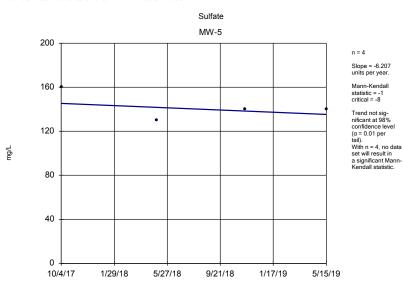

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

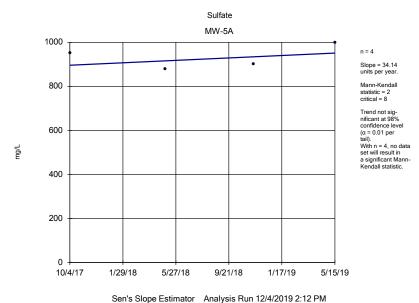

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

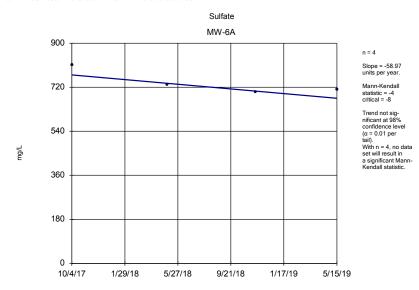

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

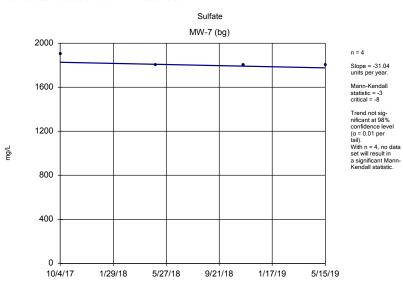

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

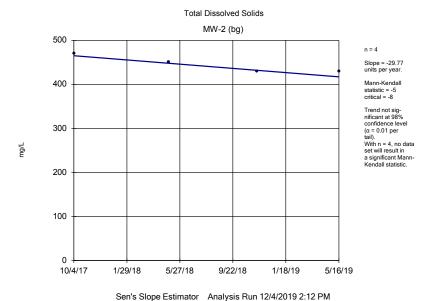

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

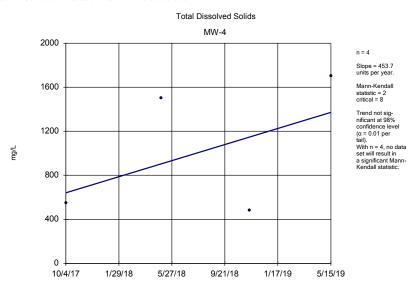

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

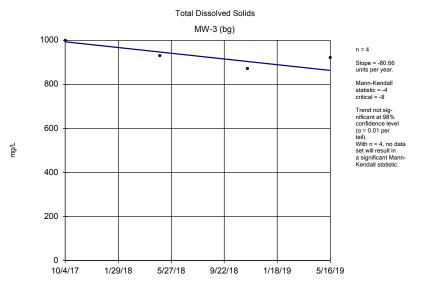
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

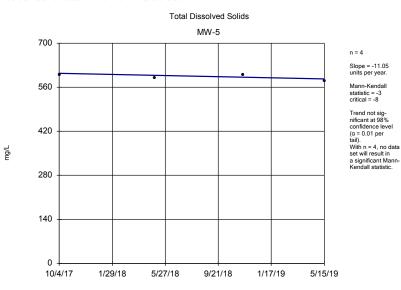

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

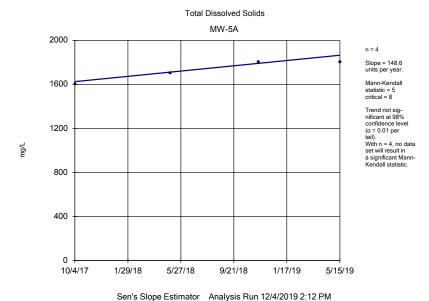

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

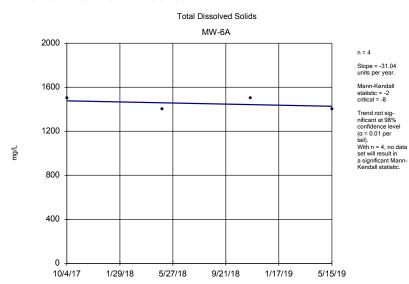

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

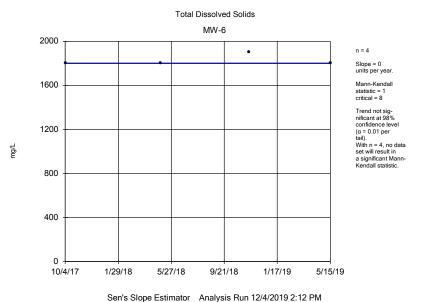
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

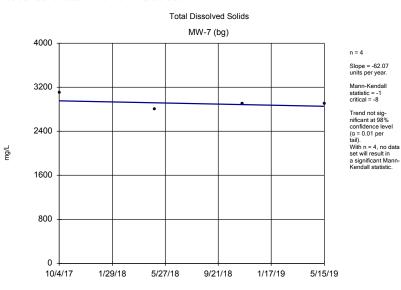

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

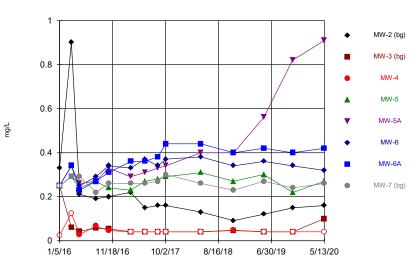
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

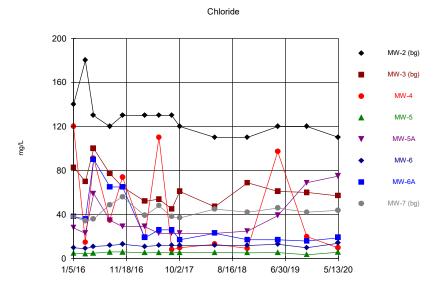
	The Empire District Client: Mic	dwest Environme	ental Consultants	Data: 11-	19 App 3 As	bury pond	s with backg	round Printe	ed 12/4/2019, 2:	13 PM	
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	-1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	315.1	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	-6.207	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	34.14	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	-8.649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-31.04	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-29.77	-5	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-80.66	-4	-8	No	4	0	n/a	n/a	0.02	NP
(3 /	- (-3/										

Trend Test Page 2

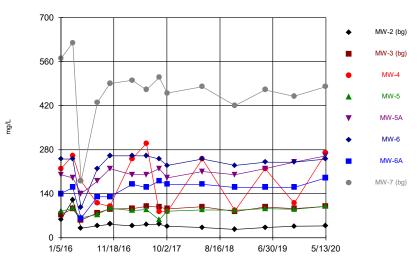

	The Empire District Client: Mi	npire District				Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM								
Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method			
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP			
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP			
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP			
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP			
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP			
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP			

Sanitas[™] Output – Sampling Event

Time Series Analysis

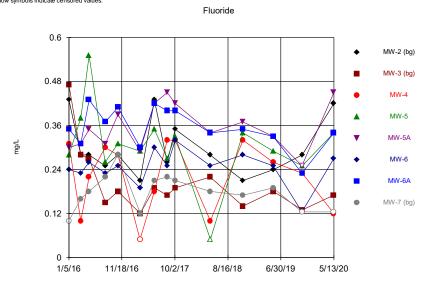


Time Series Analysis Run 6/3/2020 2:31 PM


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

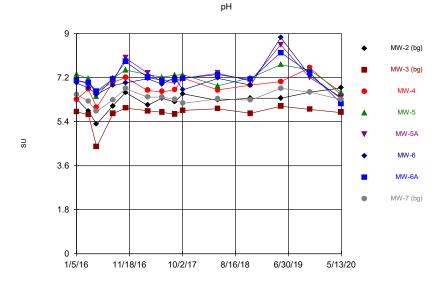
${\sf Sanitas^{\sf nu}}\ v. 9. 6. 25\ {\sf Sanitas}\ {\sf software}\ {\sf licensed}\ to\ {\sf Midwest}\ {\sf Environmental}\ {\sf Consultants}.\ {\sf UG}$

Time Series Analysis Run 6/3/2020 2:31 PM


Calcium

Time Series Analysis Run 6/3/2020 2:31 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

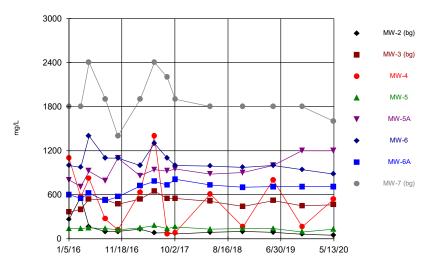
Time Series Analysis Run 6/3/2020 2:31 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Time Series Analysis Run 6/3/2020 2:32 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG

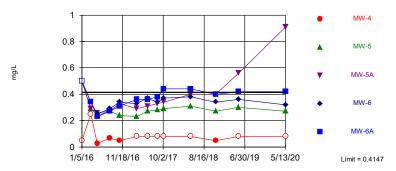

Total Dissolved Solids

Time Series Analysis Run 6/3/2020 2:32 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Time Series Analysis Run 6/3/2020 2:32 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background



Sanitas[™] Output – Sampling Event Prediction Limits

Hollow symbols indicate censored values.

Exceeds Limit: MW-5A, MW-6A Boron

Interwell Parametric

Background Data Summary (based on square root transformation) (after Kaplan-Meier Adjustment): Mean=0.3572, Std. Dev.=0.1513, n=39, 20.51% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.017, calculated = 0.917, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Prediction Limit Analysis Run 6/3/2020 2:38 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG

Within Limit Chloride
Interwell Non-parametric

MW-4

MW-5

MW-5A

MW-6A

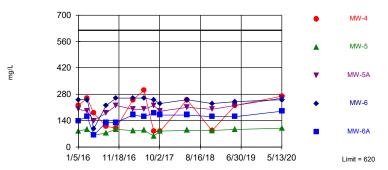
MW-6A

MW-6A

MW-6A

MW-6A

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.


Prediction Limit Analysis Run 6/3/2020 2:38 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

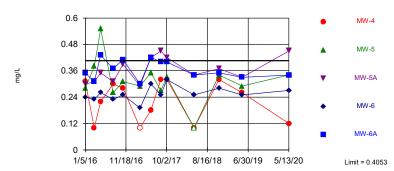
Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG

Within Limit Calcium

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

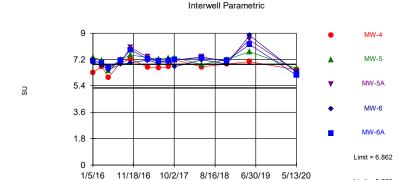
Prediction Limit Analysis Run 6/3/2020 2:38 PM


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Fluoride

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Exceeds Limit: MW-5A

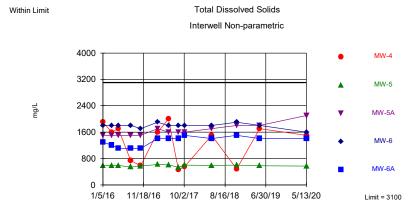

Interwell Parametric

Background Data Summary (based on square root transformation): Mean=0.4799, Std. Dev.=0.08269, n=39, 5.128% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9223, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG

Within Limits

pН

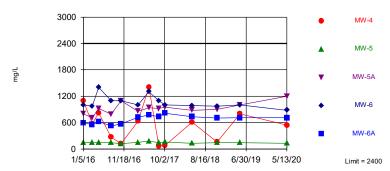

Background Data Summary (based on square transformation): Mean=37.34, Std. Dev.=5.141, n=39. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9271, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000752. Comparing 5 points to limit.

Limit = 5.253

Prediction Limit Analysis Run 6/3/2020 2:38 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 6/3/2020 2:39 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

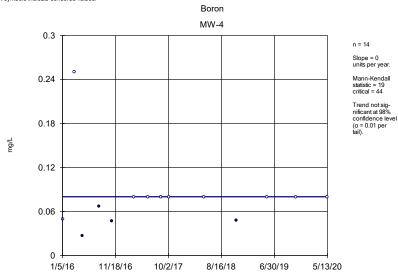
Prediction Limit Analysis Run 6/3/2020 2:39 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Prediction Limit

	The Empire District			Consultants	Data: 5-20 App 3 Asbury ponds with background Printed 6/3/2020, 2:39 PM						
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.4147	n/a	5/13/2020	0.08ND	No	39	20.51	sqrt(x)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-5	0.4147	n/a	5/13/2020	0.27	No	39	20.51	sqrt(x)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-5A	0.4147	n/a	5/13/2020	0.91	Yes	39	20.51	sqrt(x)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-6	0.4147	n/a	5/13/2020	0.32	No	39	20.51	sqrt(x)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-6A	0.4147	n/a	5/13/2020	0.42	Yes	39	20.51	sqrt(x)	0.001504	Param Inter 1 of 2
Calcium (mg/L)	MW-4	620	n/a	5/13/2020	270	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	5/13/2020	100	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	5/13/2020	260	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	5/13/2020	250	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	5/13/2020	190	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	5/13/2020	9.7	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	5/13/2020	5.8	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	5/13/2020	75	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	5/13/2020	14	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	5/13/2020	19	No	39	0	n/a	0.0012	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.4053	n/a	5/13/2020	0.12	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.4053	n/a	5/13/2020	0.34	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.4053	n/a	5/13/2020	0.45	Yes	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.4053	n/a	5/13/2020	0.27	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.4053	n/a	5/13/2020	0.34	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
pH (SU)	MW-4	6.862	5.253	5/13/2020	6.49	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5	6.862	5.253	5/13/2020	6.59	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5A	6.862	5.253	5/13/2020	6.38	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6	6.862	5.253	5/13/2020	6.33	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6A	6.862	5.253	5/13/2020	6.13	No	39	0	x^2	0.000752	Param Inter 1 of 2
Sulfate (mg/L)	MW-4	2400	n/a	5/13/2020	540	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	5/13/2020	130	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	5/13/2020	1200	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	5/13/2020	880	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	5/13/2020	710	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	5/13/2020	1500	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	5/13/2020	570	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	5/13/2020	2100	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	5/13/2020	1600	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	5/13/2020	1400	No	39	0	n/a	0.0012	NP Inter (normality)

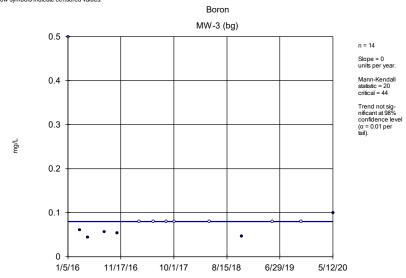
0.9


Boron

MW-2 (bg)

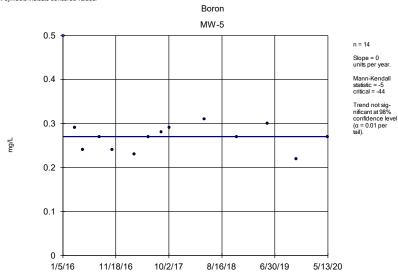
Sen's Slope Estimator Analysis Run 6/3/2020 2:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

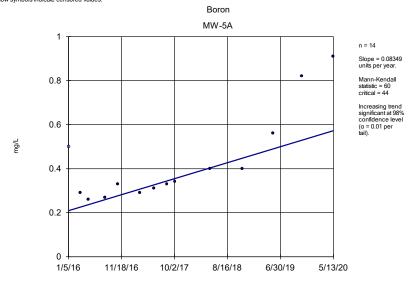
Sen's Slope Estimator Analysis Run 6/3/2020 2:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

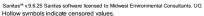

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

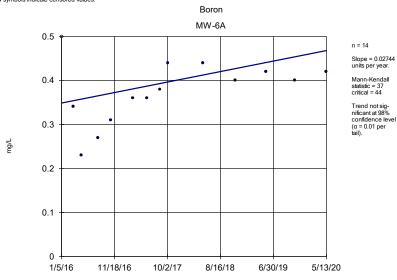
Sen's Slope Estimator Analysis Run 6/3/2020 2:59 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

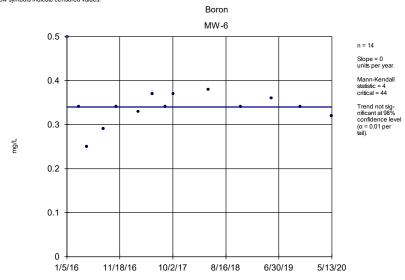

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 6/3/2020 2:59 PM

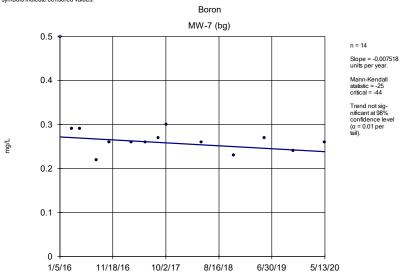

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

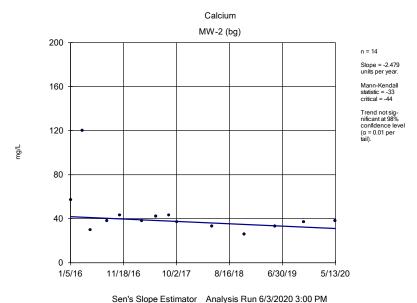
Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

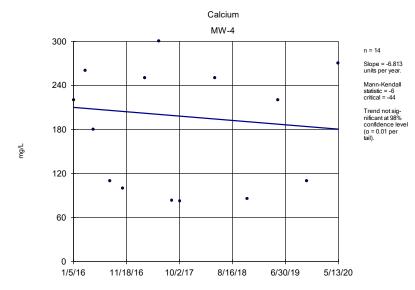
Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM


Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

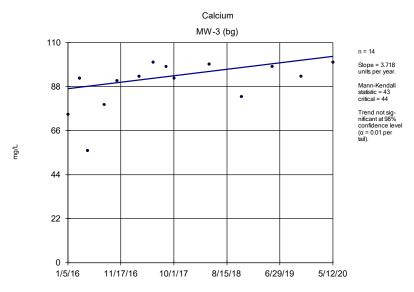
Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

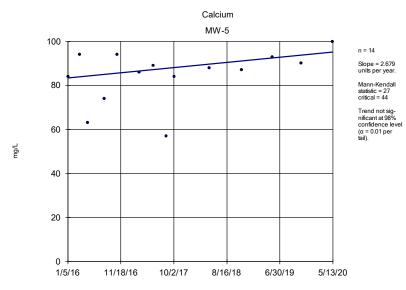

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

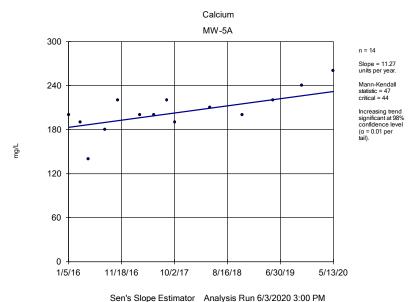

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

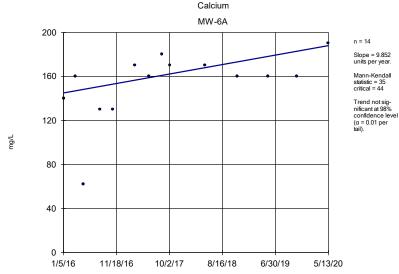

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

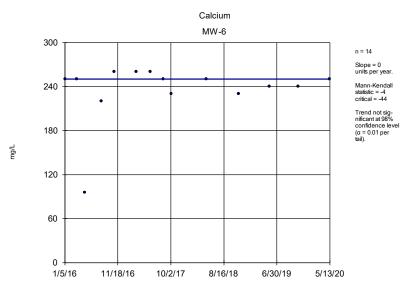
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

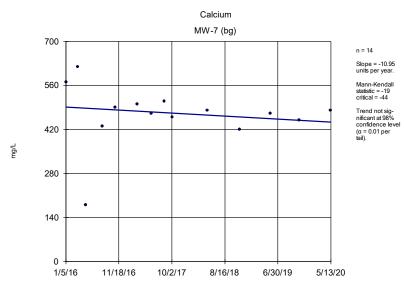

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

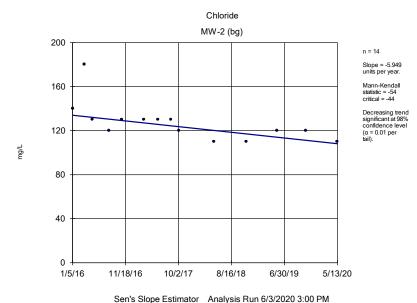

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

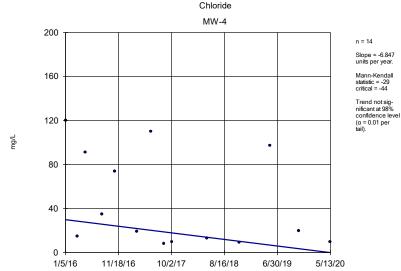

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

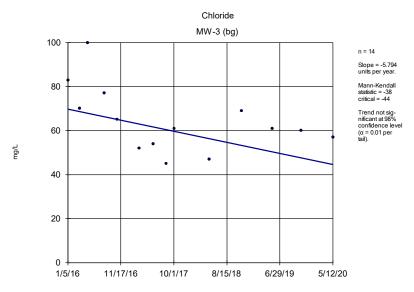

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

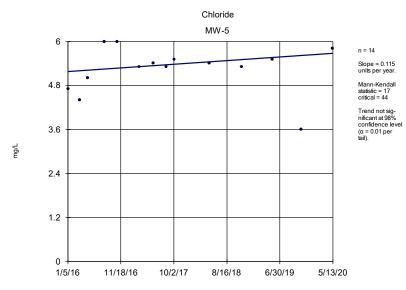
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background



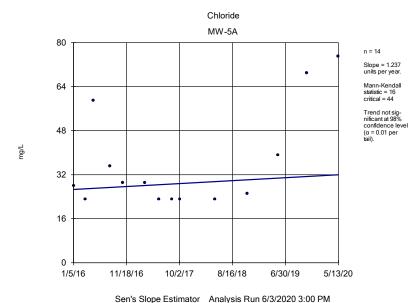

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

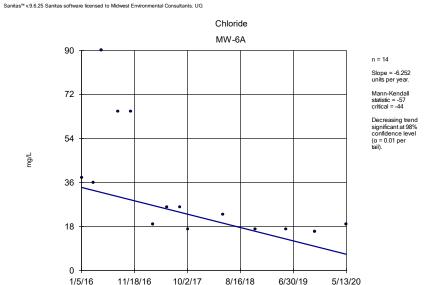

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

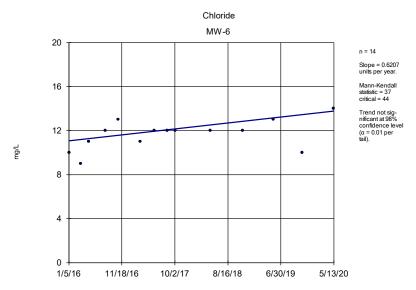

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

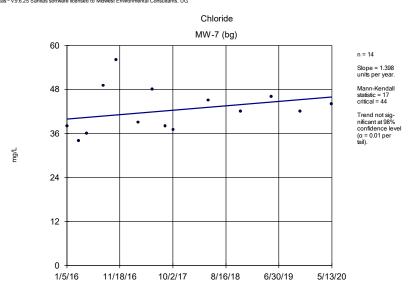


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

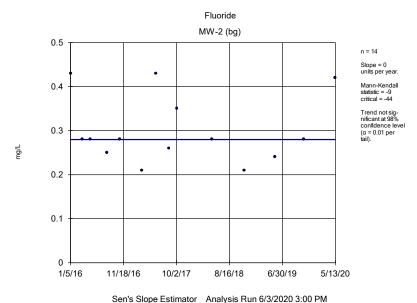
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background



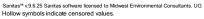
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

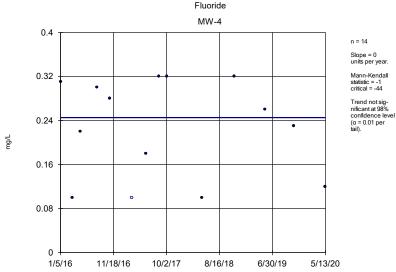

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

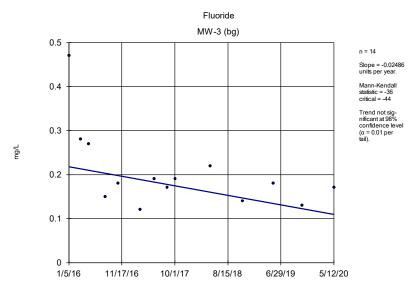

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

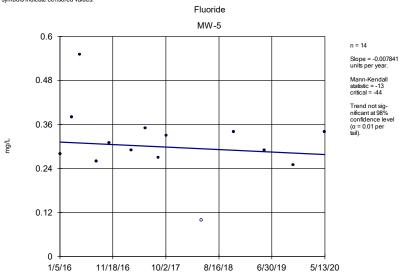



Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

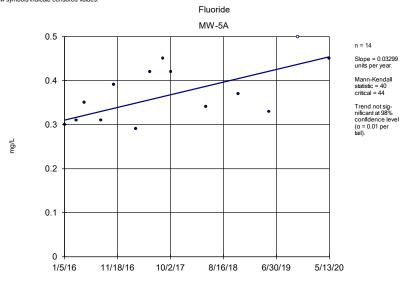

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

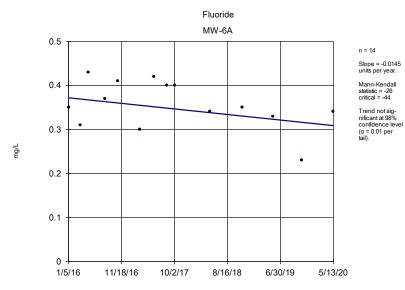
Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

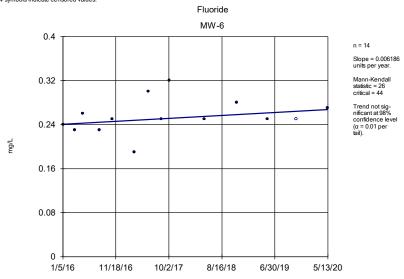
Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

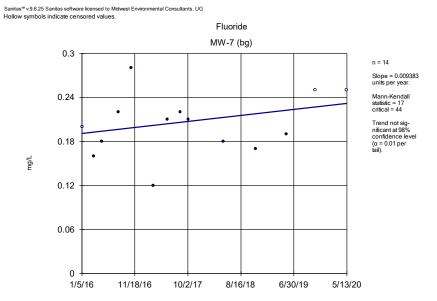

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

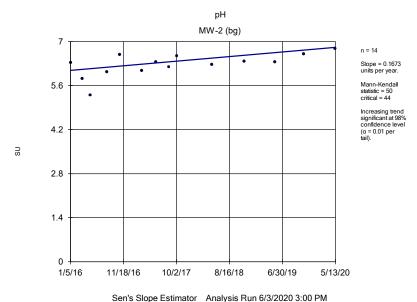
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG

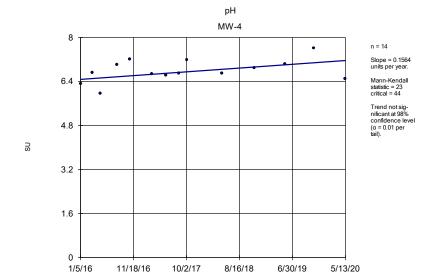
Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.25 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

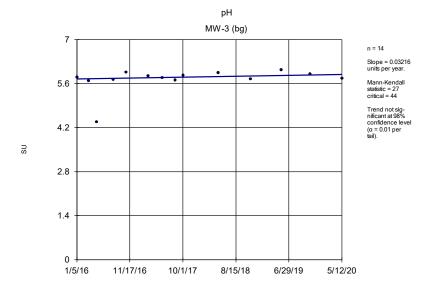

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

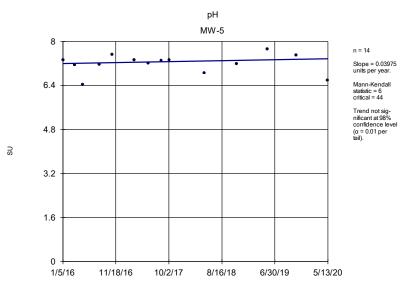


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

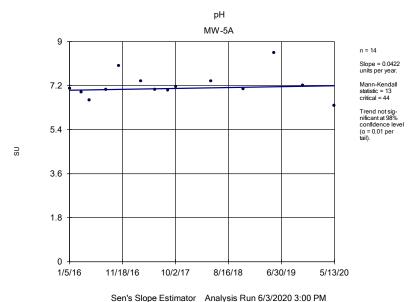
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background



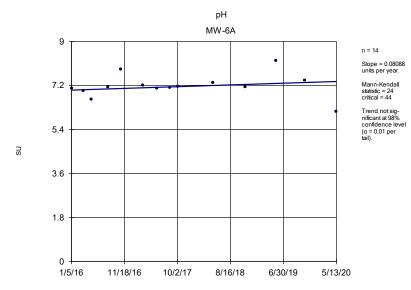
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

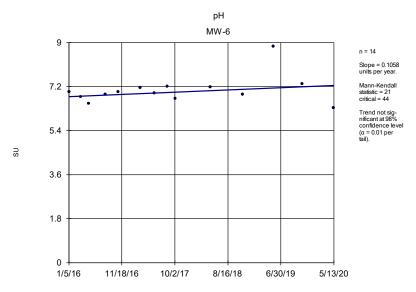
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

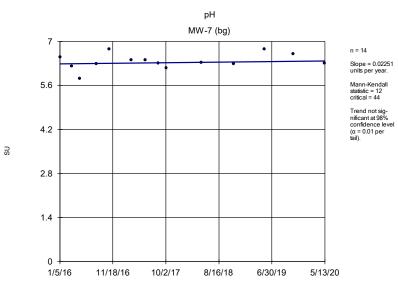

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

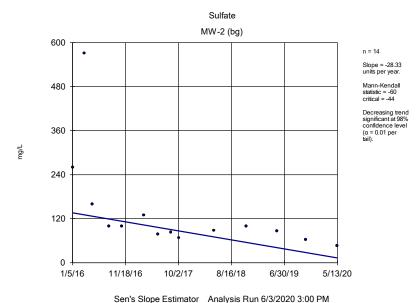

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

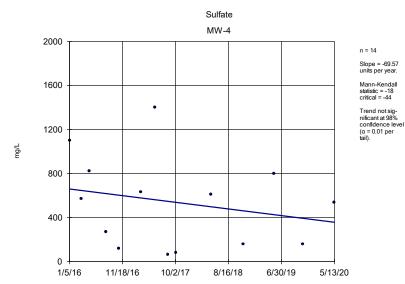

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

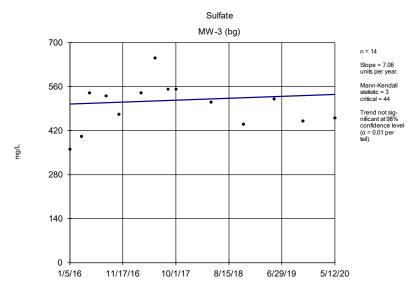
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

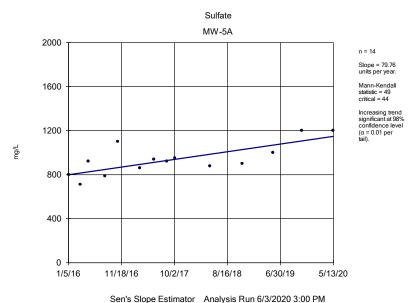

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

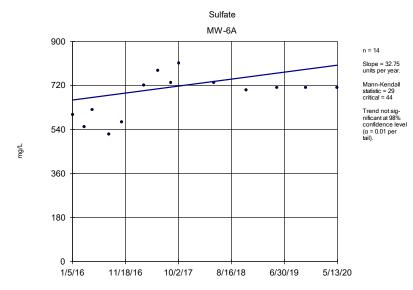

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

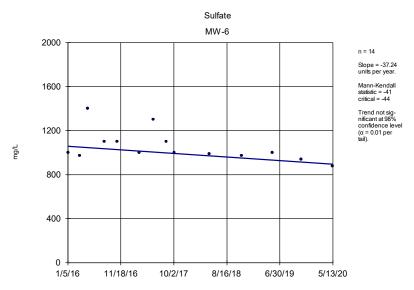
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

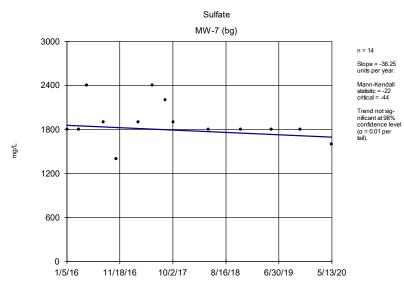

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

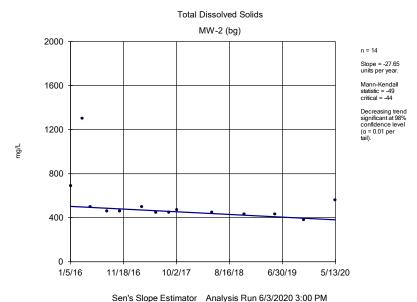

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

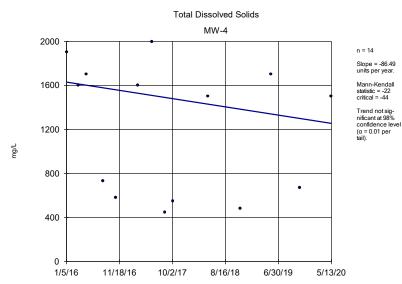

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

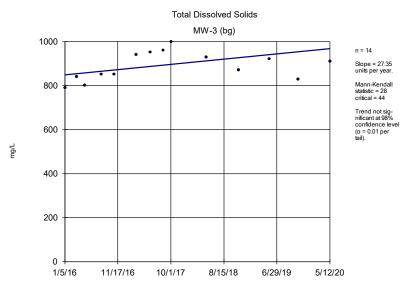
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

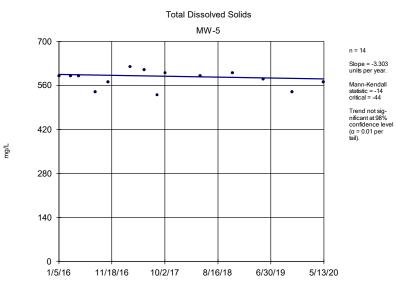

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

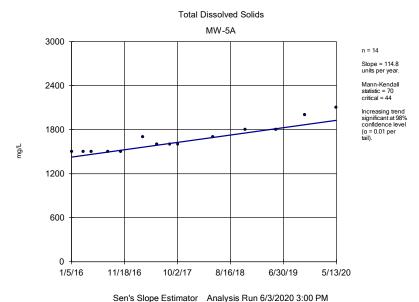

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

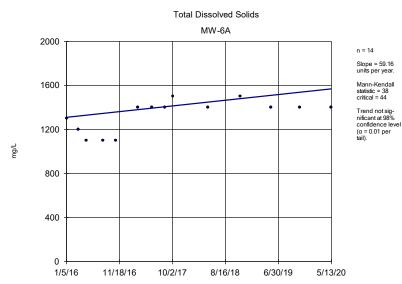

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

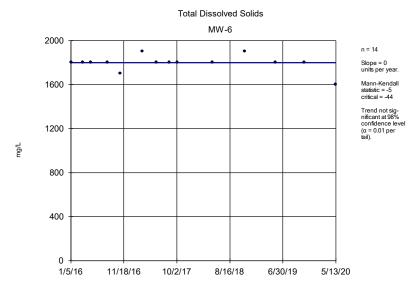
The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

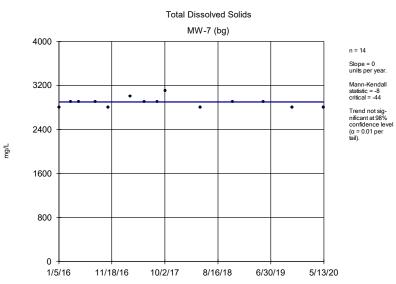

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 6/3/2020 3:00 PM

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

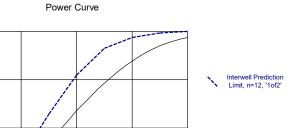
The Empir	e District Client: Mid	west Environm	ental Consulta	nts Data: 5-20	App 3 As	bury ponds	with backg	round Printe	d 6/3/2020, 3:10	PM	
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	Xform	Alpha	Method
Boron (mg/L)	MW-2 (bg)	-0.04017	-55	-44	Yes	14	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	20	44	No	14	57.14	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	19	44	No	14	71.43	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	0	-5	-44	No	14	7.143	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.08349	60	44	Yes	14	7.143	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	0	4	44	No	14	7.143	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	0.02744	37	44	No	14	7.143	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.00	-25	-44	No	14	7.143	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-2.479	-33	-44	No	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	3.718	43	44	No	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	-6.813	-6	-44	No	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	2.679	27	44	No	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	11.27	47	44	Yes	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	0	-4	-44	No	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	9.852	35	44	No	14	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-10.95	-19	-44	No	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	-5.949	-54	-44	Yes	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	-5.794	-38	-44	No	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	-6.847	-29	-44	No	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	0.115	17	44	No	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	1.237	16	44	No	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.6207	37	44	No	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	-6.252	- 5 7	-44	Yes	14	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	1.398	- 37 17	44	No	14	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	0	-9	-44	No	14	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02486	-9 -36	- 44 -44	No	14	0	n/a n/a	n/a	0.02	NP
	MW-4	0.02400		- 44 -44			7.143			0.02	NP NP
Fluoride (mg/L)			-1 12	- 44 -44	No No	14		n/a	n/a		NP
Fluoride (mg/L)	MW-5 MW-5A	-0.00 0.03299	-13 40		No No	14 14	7.143 7.143	n/a	n/a	0.02 0.02	NP
Fluoride (mg/L)			40	44				n/a	n/a		NP NP
Fluoride (mg/L)	MW-6	0.006186	26	44	No	14	7.143 0	n/a	n/a	0.02	
Fluoride (mg/L)	MW-6A	-0.0145	-26	-44	No	14		n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	0.009383	17	44	No	14	21.43	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	0.1673	50	44	Yes	14	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.03216	27	44	No	14	0	n/a	n/a /-	0.02	NP
pH (SU)	MW-4	0.1564	23	44	No	14	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.03975	6	44	No	14	0	n/a /-	n/a /-	0.02	NP
pH (SU)	MW-5A	0.0422	13	44	No	14	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	0.1058	21	44	No	14	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.08088	24	44	No	14	0	n/a	n/a ,	0.02	NP
pH (SU)	MW-7 (bg)	0.02251	12	44	No	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	-28.33	-60	-44	Yes	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	7.06	3	44	No	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	-69.57	-18	-44	No	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	-2.403	-20	-44	No	14	0	n/a	n/a ,	0.02	NP
Sulfate (mg/L)	MW-5A	79.76	49	44	Yes	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	-37.24	-41	-44	No	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	32.75	29	44	No	14	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-36.25	-22	-44	No	14	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-27.65	-49	-44	Yes	14	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	27.35	28	44	No	14	0	n/a	n/a	0.02	NP

Trend Test Page 2

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background Printed 6/3/2020, 3:10 PM											
Well	Slope	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method	
MW-4	-86.49	-22	-44	No	14	0	n/a	n/a	0.02	NP	
MW-5	-3.303	-14	-44	No	14	0	n/a	n/a	0.02	NP	
MW-5A	114.8	70	44	Yes	14	0	n/a	n/a	0.02	NP	
MW-6	0	-5	-44	No	14	0	n/a	n/a	0.02	NP	
MW-6A	59.16	38	44	No	14	0	n/a	n/a	0.02	NP	
MW-7 (bg)	0	-8	-44	No	14	0	n/a	n/a	0.02	NP	
	Well MW-4 MW-5 MW-5A MW-6 MW-6A	Well Slope MW-4 -86.49 MW-5 -3.303 MW-5A 114.8 MW-6 0 MW-6A 59.16	Well Slope Calc. MW-4 -86.49 -22 MW-5 -3.303 -14 MW-5A 114.8 70 MW-6 0 -5 MW-6A 59.16 38	Well Slope Calc. Critical MW-4 -86.49 -22 -44 MW-5 -3.303 -14 -44 MW-5A 114.8 70 44 MW-6 0 -5 -44 MW-6A 59.16 38 44	Well Slope Calc. Critical Sig. MW-4 -86.49 -22 -44 No MW-5 -3.303 -14 -44 No MW-5A 114.8 70 44 Yes MW-6 0 -5 -44 No MW-6A 59.16 38 44 No	Well Slope Calc. Critical Sig. N MW-4 -86.49 -22 -44 No 14 MW-5 -3.303 -14 -44 No 14 MW-5A 114.8 70 44 Yes 14 MW-6 0 -5 -44 No 14 MW-6A 59.16 38 44 No 14	Well Slope Calc. Critical Sig. N %NDs MW-4 -86.49 -22 -44 No 14 0 MW-5 -3.303 -14 -44 No 14 0 MW-5A 114.8 70 44 Yes 14 0 MW-6 0 -5 -44 No 14 0 MW-6A 59.16 38 44 No 14 0	Well Slope Calc. Critical Sig. N %NDs Normality MW-4 -86.49 -22 -44 No 14 0 n/a MW-5 -3.303 -14 -44 No 14 0 n/a MW-5A 114.8 70 44 Yes 14 0 n/a MW-6 0 -5 -44 No 14 0 n/a MW-6A 59.16 38 44 No 14 0 n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform MW-4 -86.49 -22 -44 No 14 0 n/a n/a MW-5 -3.303 -14 -44 No 14 0 n/a n/a MW-5A 114.8 70 44 Yes 14 0 n/a n/a MW-6 0 -5 -44 No 14 0 n/a n/a MW-6A 59.16 38 44 No 14 0 n/a n/a	Well Slope Calc. Critical Sig. N %NDs Normality Xform Alpha MW-4 -86.49 -22 -44 No 14 0 n/a n/a 0.02 MW-5 -3.303 -14 -44 No 14 0 n/a n/a 0.02 MW-5A 114.8 70 44 Yes 14 0 n/a n/a 0.02 MW-6 0 -5 -44 No 14 0 n/a n/a 0.02 MW-6A 59.16 38 44 No 14 0 n/a n/a 0.02	

Sanitas[™] Output – Sampling Event

Power Curve


100

75

50

25

0

4

5

➤ EPA Reference Curve

Kappa = 2.292, based on 5 compliance wells and 7 constituents, evaluated semi-annually (this report reflects annual total).

Standard Deviations

2

Analysis Run 6/3/2020 3:12 PM

3

The Empire District Client: Midwest Environmental Consultants Data: 5-20 App 3 Asbury ponds with background

APPENDIX B

November 2020 Sampling Event

2020 Groundwater Monitoring, Sampling & Statistics **Per EPA CCR Rule (CFR § 257.90-.98)**

November Sampling Event

Asbury Generating Station CCR Impoundment Jasper County, MO

January 2021

Prepared For:

The Empire District Electric Company 602 S. Joplin Avenue Joplin, Missouri 64801

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE LOCATION	2
2.1 History	2
2.2 Site Geology	2
2.3 Groundwater Monitoring Network Design	3
2.4 Groundwater Monitoring Network	3
2.5 Seasonal Variation	3
2.6 Groundwater Flow Direction	4
3.0 BASELINE GROUNDWATER DATA	5
3.1 Baseline Data Collection	5
3.2 Baseline Data Analysis	5
4.0 GROUNDWATER SAMPLING EVENT	6
5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA	7
5.1 Precision	7
5.2 Accuracy	7
5.3 Representativeness	7
5.4 Comparability	7
5.5 Completeness	8
6.0 Statistical ANALYSIS	9
6.1 Sampling Results	9
6.2 Statistical Analysis	9
6.3 Results Interpretation	11
6.4 Proposed Actions	14

LIST OF FIGURES

Figure 1 – Site Location

Figure 2 – Monitoring Well Location

Figure 3 – Potentiometric Map

LIST OF APPENDICES

Appendix 1 – EPA/MDNR Correspondence

Appendix 2 – Baseline Sampling Information

Appendix 3 – Monitoring Well Field Inspection Sheets and Field Notes

Appendix 4 – Analytical Results from Lab

Appendix 5 – Statistical Analysis

1.0 INTRODUCTION

The EPA Coal Combustion Residual Regulations (40 CFR Part 257) (CCR Rule) require groundwater monitoring of CCR impoundment. This Asbury Generating Station CCR impoundment groundwater monitoring sampling report is in accordance with the EPA CCR Rule.

In accordance with the EPA CCR Rule (§ 257.90-.98) the status of the Groundwater Monitoring was placed on-line October 17, 2017, as required by the EPA CCR rule. On November 2, 2017 the facility received approval from Missouri Department of Natural Resources (MDNR) of their groundwater system (included in **Appendix 1**). Empire notified the MDNR "State Director" via email when this document was posted on-line, as required in the CCR rule.

The EPA CCR Rule requires the annual groundwater report be prepared by January 31st of the following year. The first report was due January 31, 2018. This report was prepared in general accordance with the EPA CCR Rule for groundwater requirements. These regulations outline groundwater monitoring requirements and data evaluation methods. The annual groundwater report for the 2020 sampling events will be posted on-line within 30 days of placement in the operating record.

The purpose of the groundwater monitoring plan is to monitor the ground water quality surrounding the facility and to evaluate potential impacts and/or releases from facility operations. Background groundwater data was collected from January 2016 to August 2017. After the background data plus the first semi-annual sampling events, a reduced sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will generally be completed during the months of May and November. Statistical analysis for EPA Appendix III began after the first semi-annual sampling event was collected on October 4, 2017 to determine if a statistically significant increase (SSI) has occurred. If an SSI is verified, additional evaluation is required to determine if the SSI was caused by the CCR impoundment.

On November 10, 2020, a semi-annual sampling event was conducted per the EPA CCR Rule (§ 257.90-.98). Eight (8) groundwater-monitoring wells were sampled and analyzed for the EPA Appendix III. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. For quality assurance and quality control measures, a duplicate sample at MW-5 was taken. These samples were preserved and submitted directly to the laboratory.

This report is a summary of the November 2020 sampling event and the findings of the statistical analysis of the results of the groundwater monitoring program at the Asbury Generating Station CCR Impoundment. Specific information of each sampling event can be obtained from the individual report which is part of the Asbury Operating Record.

2.0 SITE LOCATION

The site occupies the north half of Section 17, Township 30 North, and Range 33 West on the Asbury 7.5-Minute Quadrangle Map as seen in **Figure 1**. The site is located approximately 5.5 miles north-northeast of Asbury, Missouri, about 14 miles north-northwest of Joplin, Missouri. A map showing the locations of the monitoring wells is on **Figure 2**.

2.1 History

In March 1996, five (5) groundwater monitoring wells, MW-1 through MW-5, were installed around the perimeter of the Asbury Generating Station CCR impoundment. Monitoring wells MW-1, MW-2 and MW-3 were installed to a total depth of between 27.0 to 28.5 feet below ground surface (bgs). Monitoring wells MW-4 and MW-5 were installed to a total depth of 48 feet bgs. Each of the five monitoring wells was equipped with 10.0-foot well screens. The five wells were then developed, purged, and sampled in 1996.

In 2003, two (2) additional groundwater monitoring wells were installed and identified as MW-6 and MW-7. Both wells had 2-inch diameter PVC well casings installed to an approximate total depth of 44 feet below ground surface. Both wells were installed with an above ground steel protective cover. No other construction details such as well screen lengths were available for these two (2) wells. In December 2015, two (2) additional groundwater monitoring wells were installed and identified as MW-5A and MW-6A.

All wells are registered with MDNR – Missouri Geological Survey Program.

2.2 Site Geology

Drilling and subsurface investigation activities at the Site and as part of the MDNR approved CCR landfill Detailed Site Investigation (DSI) for the adjacent landfill area identified three (3) primary geologic units at the Site. These geologic units include the surficial soil layer, Warner Sandstone (uppermost aquifer), and Riverton Shale (confining unit). The information presented herein includes the primary elements of a site characterization work plan consistent with the MDNR guidance.

<u>Surficial Soil</u>. Soils at the site consist of a surficial unit of cohesive soils (e.g., CL, SC, ML, and CH) underlain by Pennsylvanian-age bedrock. Soil thickness at the Site ranges from approximately 15-25 feet.

Warner Sandstone. The Warner Sandstone (Sandstone) is the uppermost bedrock unit in south portion of the Site. In the north area of the Site, the Sandstone is overlain by the Riverton Shale (Shale). Based on the DSI information, the Sandstone and Shale can occur as alternating layers. The Sandstone and Shale are gradational in places and transition from shaley sandstone to sandy shale. According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Warner Sandstone formation is described as follows: "Generally, the lower part is interbedded, very fine grained sandstone and claystone. The upper part is largely medium-bedded to massive channel fill sandstone. In places, the Warner consists primarily of shale and claystone, with only minor amounts of sandstone" and "ranges in thickness from 0 to 15m (49.2 ft.)."

The Sandstone is more than 25-30 feet thick in places and is generally medium hard and thin to medium bedded with occasional shale partings. The degree of induration of the Sandstone varies and generally increases with depth. Slug tests performed at selected DSI piezometers screened in

the Sandstone exhibited hydraulic conductivities ranging from approximately 1.3x10-4 cm/sec to 5.9x10-6 cm/sec. The slug test results are consistent with values for sandstone and shaley sandstone. The groundwater gradient is towards the east and Blackberry Creek.

Riverton Shale. Layers of the Riverton Shale (Shale) exhibited thicknesses ranging from approximately one foot to more than 10 feet. The Shale is generally dark gray to light gray. The Shale is mainly thin bedded with hardness ranging from soft to hard. Six packer tests were performed during the DSI to assess the hydraulic conductivity of the Shale. The packer test results ranged from approximately 3.2×10^{-6} cm/sec to 4.9×10^{-8} cm/sec. The packer test data indicates that the Shale is an effective confining unit.

According to the MDNR publication on the Pennsylvanian Subsystem in Missouri, the Riverton Shale formation is described as "dark gray to black, fine-grained, relatively brittle shale and contains as many as three coal beds, each of which is underlain by underclay" and "varies in thickness from a featheredge to more than 90 feet".

<u>Unnamed Coal</u>. The Shale includes coal seams in places that range in thickness from a few inches to approximately 1.5 feet. The coal is generally black to dark gray.

2.3 Groundwater Monitoring Network Design

The groundwater monitoring system for the CCR impoundment consists of nine (9) groundwater monitoring wells. Two (2) wells are considered upgradient. Two (2) wells are considered sidegradient; one is only monitored for groundwater elevation. The remaining five (5) wells are considered downgradient.

The groundwater monitoring wells (MWs) at the Asbury Generating Station are equipped with individual dedicated poly tubing to be connected to a peristaltic pump/controller at the surface. Low-flow, micro-purge and sampling techniques and technology are utilized to collect groundwater samples from the subject wells. The groundwater sampling procedures are discussed in further detail below.

2.4 Groundwater Monitoring Network

The locations of the monitoring wells are shown on **Figure 2**. The groundwater monitoring system for the site consists of the following monitoring wells:

- MW-1 Sidegradient (water level only)
- MW-2 Upgradient
- MW-3 Upgradient
- MW-4 Downgradient
- MW-5 Downgradient
- MW-5A Downgradient
- MW-6 Downgradient
- MW-6A Downgradient
- MW-7 Sidegradient

2.5 Seasonal Variation

Historical groundwater elevation data has been limited. However, adequate lengths of well screen have been utilized during the construction of the wells to accommodate typical seasonal groundwater elevation variations seen in southwest Missouri.

2.6 Groundwater Flow Direction

Historically, the seasonally high potentiometric surface indicated the groundwater flow direction to the east. **Figure 3** is a potentiometric map for this May 2018 sampling event.

Originally MW-7 was thought to be a downgradient well but review of the potentiometric mapping from the eight background sampling events revealed that the well is actually a sidegradient well. Therefore, the designation for MW-7 has been changed from a downgradient to a sidegradient well for compliance monitoring.

3.0 BASELINE GROUNDWATER DATA

3.1 Baseline Data Collection

Per EPA CCR Rule § 257.94(b), the site initiated the detection monitoring program in January 2016 to include obtaining a minimum of eight (8) independent samples for each background and downgradient well. The eight (8) independent groundwater samples were obtained and analyzed as required by the CCR Rule under per the baseline groundwater monitoring plan. Background groundwater data was collected from January 2016 to August 2017.

Groundwater Monitoring Reports were completed for each sampling event and have been placed in the Operating Record. Summary tables of the results from each event are included in **Appendix 2**. A listing of each event is below:

- January 2016
- March 2016
- May 2016
- August 2016
- October 2016
- March 2017
- June 2017
- August 2017

Initial baseline monitoring was required at all monitoring wells. The sampling frequency was quarterly or more frequently for the first two (2) years. After the background data plus the first semi-annual sampling events, a reduced lower sampling frequency replaced the quarterly events to semi-annual events. This lessened sampling frequency will be completed during the months of May and October.

The initial two (2) years of baseline and the first semi-annual detection monitoring included parameters listed in Appendix III and Appendix IV of the EPA CCR Rule. The constituents listed in Appendix IV were eliminated from the overall semi-annual detection monitoring plan after review of the first semi-annual groundwater sampling event analytical results in January 2018, according to the EPA CCR Rule. **Appendix 2** contains the list of constituents.

3.2 Background Data Analysis

Sanitas™ for Ground Water Version 9.2.13 was used to run the statistical analyses with settings used as recommended by the Sanitas™ training course and user manual. The background data consisted of eight sampling events between January 2016 and August 2017 for both the Appendix III and IV constituents. Eight background events are needed for statistical analysis. An analysis of the Appendix III background data was conducted and is included in **Appendix 5**. Trending was found in Boron (MW-3) and Total Dissolved Solids (MW-3). MW-3 is an up-gradient well. Trending was not removed at that time; otherwise the site would be below the minimum of eight background samples needed to run statistics.

Four more sets of background data were available to add to the background data set for the November 2019 sampling event. The analysis of the additional data for the background data set was conducted and is included in **Appendix 5**. No trending was found in the additional four sets of data so they were added to the baseline data set to increase the statistical power of the background data.

4.0 GROUNDWATER SAMPLING EVENT

On November 10, 2020, eight (8) groundwater monitoring wells were sampled by Midwest Environmental Consultants (MEC) for the EPA CCR Rule Appendix III parameters. For quality assurance and quality control measures, a duplicate sample was taken at MW-5. The sampling protocol and methodology was to be conducted in accordance to the facility's Sampling and Analysis Plan. **Table 1** provides a list of the analytical methods employed by the subcontracted laboratory.

Table 1 – Analytical Methods							
Method	Description						
9056A	Anions, Ion Chromatography						
6020A	Metals (ICP/MS)						
SM 2540C	Solids, Total Dissolved (TDS)						
Field Sampling	Field Sampling						

Appendix 3 includes Monitoring Well Field Inspection sheets and field notes. The physical integrity of the wells was good. During sample collection each of the wells was monitored for pump discharge and formation recharge. Initially, a static water level for each well was recorded (Table 2). To ensure sufficient recharge while sampling, static water levels were collected during pumping. Prior to sample collection, field parameters for each well were measured with a flow-through meter. When the field parameters stabilized, samples for analytical testing were collected and placed on ice for hand delivery to the laboratory. At the conclusion of sample collection from each well, a final static water level measurement was obtained. The samples were collected in the appropriately pre-preserved sample containers and placed on ice for delivery.

Table 2 - Groundwater Sampling Field Parameters Summary During November 2020 Sampling Event								
WELL	STATIC WA (ft-B		PURGE RATE (mL/min)	STABILIZED				
ID.	Initial	Final	(11112/111111)	рН				
MW-1*	NT	NA	NA	NA				
MW-2	1.62	3.95	200	6.51				
MW-3	1.72	1.76	200	5.68				
MW-4	6.01	11.46	200	6.80				
MW-5	0.00	5.53	200	7.60				
MW-5A	9.42	15.02	200	6.72				
MW-6	9.20	14.07	200	6.96				
MW-6A	8.41	13.48	200	7.09				
MW-7	5.03	5.20	200	6.81				

^{*} Water Level Only NA – Not Applicable NT – Not Tested (inaccessible)

Appendix 4 includes the initial analytical results for the sampling event. Included with this analytical report are sample information; chain of custody; wet chemistry data; and volatile data.

5.0 DATA VALIDATION PROCEDURES FOR GROUNDWATER MONITORING DATA

Midwest Environmental Consultants receives Data Packages from the analytical laboratory (Test America). The internal quality control/quality assurance case narratives and reported data are then reviewed. Generally the data validation procedures established by the U.S. Environmental Protection Agency *Contract Laboratory Program Functional Guidelines for Organic Data Review* and *Functional Guidelines for Inorganic Data Review* is followed. These guidelines are used to assign data qualifiers to the data. A formal data validation report for the site is not prepared; however, any significant issues are noted in the groundwater monitoring report.

MEC evaluates the data set for precision, accuracy, representativeness, comparability, and completeness (PARCC).

5.1 Precision

<u>Laboratory Precision</u>. Laboratory quality control procedures to measure precision consist of laboratory control sample (LCS) analysis and analysis of matrix spike/matrix spike duplicates (MS/MSD). These analyses are used to define analytical variability.

<u>Field Precision.</u> Analyses of duplicate samples are used to define the total variability (replicability) of the sampling/analytical system as a whole. Field replicates are collected at a rate of one per sampling event.

5.2 Accuracy

Accuracy is determined by calculating the percent recoveries for analyses of surrogate compounds, LCSs, continuing calibration check standards, and matrix spike samples. Acceptable percent recoveries are established for SW-846 and EPA methods. Field and laboratory blank analysis are also used to address measurement bias.

<u>Field Blanks</u>. Field blanks consisted of a trip blank and a field blank. One trip blank per cooler accompanies samples for volatile organic analyses.

<u>Laboratory Blanks.</u> Method blanks, artificial, matrix-less samples, are analyzed to monitor the laboratory analysis system for interferences and contamination from glassware, reagents, etc. Method blanks are taken through the entire sample preparation process. They are included with each batch of extractions or digestions prepared, or with each 20 samples, whichever is more frequent.

5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely reflect site condition. Representativeness of the data is determined by comparing actual sampling procedures to those delineated in the field sampling plan, comparing results from field replicate samples and reviewing the results of field blanks. Field notes are reviewed as part of our data validation process.

5.4 Comparability

Comparability expresses the confidence with which one data set can be compared to another data set measuring the same property. Comparability is ensured by using established and approved sample collection techniques and analytical methods, consistent basis of analysis, consistent reporting units, and analyzing standard reference materials.

5.5 Completeness

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected under controlled laboratory conditions. Completeness is defined as the valid data percentage of the total tests requested. Valid data are defined as those where the sample arrived at the laboratory intact, properly preserved, in sufficient quantity to perform the requested analyses, and accompanied by a completed chain-of-custody form. Furthermore, the sample must have been analyzed within the specified holding time and in such a manner that analytical QC acceptance criteria were met.

6.0 STATISTICAL ANALYSIS

6.1 Sampling Results

The constituents with results above the laboratory reporting limits are included in **Table 3**. The Test America laboratory analytical results are included in **Appendix 4**.

	Table 3 – Constituents Identified Above Laboratory Reporting Limits									
During November 2020 Sampling Event Constituent Units MCL MW-2 MW-3 MW-4 MW-5 MW-5A MW-6 MW-6A MW-7										
Appendix III										
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.25	1.9	0.32	0.38	0.22
Calcium	mg/L	NA	37	92	230	71	380	240	170	460
Chloride	mg/L	NA	120	62	4.4	6.4	170	13	25	39
Fluoride	mg/L	4.0	0.39	0.14	<0.1J	0.27	<0.1J	0.22	0.3	<0.1J
рН	SU	NA	6.51	5.68	6.8	7.6	6.72	6.96	7.09	6.81
Sulfate	mg/L	NA	56	530	550	160	2300	1200	850	2200
Total Dissolved Solids	mg/L	NA	430	860	1800	510	3200	1700	1500	2800

NA = Not Applicable

No constituents were detected above the Federal Safe Drinking Water maximum contaminant level (MCL) during the sampling event.

6.2 Statistical Analysis

The November 2019 sampling event report indicated confirmed intrawell prediction limits exceedances. Intrawell prediction limits were utilized per the facility's 2018 Groundwater Statistical Analysis Plan. The Annual Report recommending the site move into assessment monitoring was stamped on January 23, 2020 and submitted to the facility. However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. Appendix 1 contains the MDNR/EPA correspondence.

Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from background wells, which include upgradient and sidegradient wells per EPA Unified Guidance definitions, and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. In order to appropriately characterize the groundwater beneath the site, the statistical methods utilized at the facility consider the following facts as they relate to site:

- Potential differences in geochemical characteristics of the groundwater caused by the differing lithologies in contact with the screened interval from well to well.
- Potential impacts of surface infiltration into the groundwater environment.

Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. Municipal and demolition waste landfills in Missouri typically utilize intrawell prediction limits per MDNR. However, it was noted that the power curve for these

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

analyses was not considered strong yet. The data set consisted of only 13 sampling events from January 2016 to November 2019. EPA Unified Guidance recommends 20 or more sampling events for background data for intrawell prediction limits. A small data set triggers an SSI when there is even a slight increase in concentration. Sanitas also note to each exceedance "Insufficient data to test for seasonality: data were not deseasonalized." Minor increases in concentration noted in the May and November 2019 sampling events did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

The EPA Unified Guidance Chapter 5.2.3 states "In groundwater data collection and testing, background conditions may not be static over time. Caution should be observed in removing observations which may signal a change in natural groundwater quality. Even when conditions have not changed, an apparently extreme measurement may represent nothing more than a portion of the background distribution that has yet to be observed. This is particularly true if the background data set contains fewer than 20 samples." Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples". Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated.

MDNR made several requests per EPA in the correspondence located in **Appendix 1** which included the EPA review of the groundwater reports as seen in **Table 4**.

	Table 4 – EPA Review of Groundwater Reports
Facility	Asbury Power Plant
Location	Asbury, MO
Owner	Empire District Electric Company
Units	Upper Pond-unlined, South Pond-unlined, Lower Pond-unlined
Geology	Surficial unit of clay, clayey sand, and silt approximately 15 to 25 feet thick underlain by Warner Sandstone approximately 25-30 feet thick in the southern portion of the site and the Riverton Shale in the northern area of the site
Problematic Use of Intra Well Comparisons	Analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells. Consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra well analysis
Problematic Alternate Source Determination	
Conclusions	While there are no boring logs in the documents to confirm that the wells are screened in the same geologic unit, consistency in the field parameters and the description of the geology suggest that the wells are screened in the sandstone. The analytical results indicate consistent differences in contaminant concentrations between upgradient and downgradient wells, consequently, interwell comparisons are feasible and would be preferable in the absence of compelling reasons to use intra wells analyses

Sanitas[™] for Ground Water Version 9.6.25 was used to run the statistical analyses with settings used as recommended by the Sanitas[™] training course and user manual. Interwell prediction intervals were run per EPA's request. The Sanitas[™] output is included in **Appendix 5**.

Statistical analysis was performed on the Appendix III constituents from the November 2020 sampling event compared to the updated background dataset. Prediction interval analyses compare one or more observations to a limit set by background data. Interwell analyses compare observations from upgradient background wells and their relation to the observations for the downgradient wells. Intrawell analyses compare background observations to current observations of the same well. Due to varying geology in the state of Missouri, intrawell analyses had initially been deemed a more appropriate method. However, EPA has requested the site utilize interwell prediction limits.

Statistical analysis results are presented below for those constituents determined to have an exceeded a prediction limit. However, EPA's "Unified Guidance Document: Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities," March 2009, EPA 530/R-09-007 is referenced multiple times in the preamble of the EPA CCR regulations for groundwater sampling and analysis requirements. According to the EPA Unified Guidance, a prediction limit exceedance is not considered a statistically significant increase (SSI) until it is confirmed through retesting. SSIs generated by non-detectable results or with less than eight background events are considered statistically invalid.

Table 5 lists the parameters with exceedances of prediction limits during the November 2020 sampling event, the associated monitoring wells, if the exceedance is initial versus confirmed, the predicted limit, the measured concentration, and the MCL set forth in the National Drinking Water Regulations. The MCL is the highest level of a contaminant that is allowed in drinking water.

Table 5 – Interwell Prediction Limit Exceedances Observed											
	During November 2020 Sampling Event										
Constituent	Monitoring Well	Initial vs. Confirmed	Predicted Limit	Measured Concentration	Drinking Water MCLs						
Boron (mg/L)	MW-5A	Confirmed	0.4147	1.9	NA/4.0 GWPS*						
pH (SU)	MW-5	Initial	6.88	7.6	NA						
pH (SU)	MW-6	Initial	6.88	6.96	NA						
pH (SU)	MW-6A	Initial	6.88	7.09	NA						
Total Dissolved Solids (mg/L)	MW-5A	Initial	3100	3200	NA						

NA = Not Applicable *EPA proposed groundwater protection standard

6.3 Results Interpretation

The results of the EPA requested interwell prediction limit statistical analysis of the November 2020 sampling event indicate a confirmed exceedance for Boron (MW-5A). Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but the results were below that limit. The facility will conduct an alternative source demonstration in the next 90 days per the EPA CCR Rule (§ 257.94).

The results for pH (MW-5, MW-6 and MW-6A) and total dissolved solids (MW-5A) indicated initial interwell prediction limit exceedances for the listed monitoring well during November 2020 sampling event. There are no current primary (health based) MCLs for pH or total dissolved solids. The facility plans to resample as part of the May 2021 sampling event.

During the May 2020 sampling event, Initial interwell prediction exceedances in boron (MW-5A and MW-6A) and fluoride (MW-5A) were noted. However, the initial prediction limit exceedances of boron (MW-6A) and fluoride (MW-5A) were not confirmed during the November 2020 sampling event.

Below is a discussion of the previous results for comparison.

May 2020

The results of the EPA requested interwell prediction limit statistical analysis of the May 2020 sampling event indicate that the site is in compliance. The results for boron (MW-5A and MW-6A) and fluoride (MW-5A) indicated an initial interwell prediction limit exceedance for the listed monitoring well during May 2020 sampling event. There is a current primary (health based) MCL for fluoride of 4.0 mg/L but the result is below the limit. Boron does not have a MCL but does have an EPA proposed groundwater protection standard of 4.0 mg/L but all results were below that limit. Trending was found to be significant for boron (MW-5A) but not significant in boron (MW-6A) and fluoride (MW-5A). Boron is also trending upward in MW-2 which is an up-gradient well. The facility plans to resample as part of the November 2020 sampling event. During the November 2019 sampling event, Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted. However, these initial prediction limit exceedances were not confirmed during the May 2020 sampling event.

November 2019

The result for Chloride (MW-5A), pH (MW-4) and Sulfate (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2019 sampling event. There is no current primary (health based) MCL for chloride, pH or sulfate.

During the May 2019, the result for Boron (MW-5A) indicated an initial intrawell prediction limit exceedance and Total Dissolved Solids (MW-5A) indicated a confirmed intrawell prediction limit exceedance. There is no current primary (health based) MCL for boron and total dissolved solids. These prediction limit exceedances were confirmed during the November 2019 sampling event. A resample of MW-5A was conducted on December 11, 2019. The results of the resample confirmed the exceedances and the site planned to move into assessment monitoring.

Table 6 – December 2019 Resample Result Comparison									
Constituent	MW-5A	MW-5A Resample							
	Appendix III								
Boron	mg/L	NA	0.82	1.0					
Calcium	mg/L	NA	240	270					
Chloride	mg/L	NA	69	82					
Fluoride	mg/L	4.0	<0.5J	0.26					
рН	SU	NA	7.2	7					

Sulfate	mg/L	NA	1200	1300
Total Dissolved Solids	mg/L	NA	2000	2200

However, in February MEC received an email from the facility. MDNR had forwarded EPA correspondence requesting that the site change their statistical evaluation method to interwell prediction limits. EPA CCR Rule 40 CFR § 257.94(e)(2) allows at alternative source demonstration to be completed if the statistically significant increases are result of the statistical evaluation rather than from a release from the facility. **Appendix 1** contains the MDNR/EPA correspondence.

The results of the EPA requested interwell prediction limit statistical analysis of the November 2019 sampling event indicate that the site is in compliance. Initial interwell prediction exceedances in pH (MW-4, MW-5, MW-5A, MW-6 and MW-6A) were noted but have not been confirmed. There is no current primary (health based) Maximum Contamination Level (MCL) for pH. Trending was not found to be significant for pH in any well during the analysis of the background data set.

May 2019

The result for Boron (MW-5A) and pH (MW-3(u), MW-5A, MW-6 and MW-6A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the May 2019 sampling event. There is no current primary (health based) MCL boron or pH. The facility plans to resample as part of the November 2019 sampling event.

During the November 2018, the result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance. There is no current primary (health based) MCL for total dissolved solids. This initial prediction limit exceedances was confirmed during the May 2019 sampling event. However, it should be noted that the power curve for these analyses is not considered strong. A small data set triggers an SSI when there is even a slight increase in concentration. The EPA Unified Guidance Chapter 5.2.4 states "With such a small background sample, it can be difficult to develop an adequately powerful intrawell prediction level or control chart, even when retesting is employed (Chapter 19). Thus, additional background data will be needed to augment compliance well samples".

Minor increases in concentrations did not result in any primary MCLs to be exceeded by any of the prediction limit exceedances during the sampling event, demonstrating that the groundwater has not been contaminated. It was also noted that higher levels of total dissolved solids were seen in the side-gradient well MW-7 demonstrating that a there was likely not a release from the facility. Therefore, the site will continue with detection monitoring on a semi-annual basis at this time.

November 2018

The result for Total Dissolved Solids (MW-5A) indicated an initial intrawell prediction limit exceedance for the listed monitoring well during the November 2018 sampling event. There is no current primary (health based) MCL for total dissolved solids. The facility plans to resample MW-5A for Total Dissolved Solids as part of the May 2019 sampling event.

During the May 2018, no intrawell prediction limits were exceeded. Therefore, there were no initial prediction limit exceedances to confirm during the November 2018 sampling event.

May 2018

No intrawell prediction limits were exceeded during the May 2018 sampling event.

The October 2017 results for Total Dissolved Solids (MW-7) indicated an exceedance of the predicted limit for the listed monitoring wells. However, this initial prediction limit exceedance was not confirmed during the May 2018 sampling event.

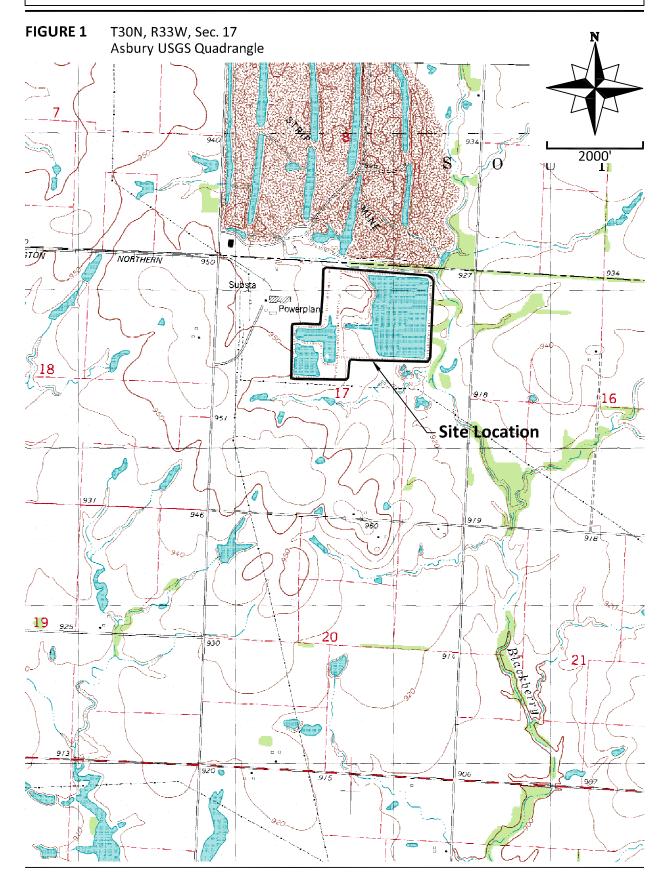
October 2017

The result for Total Dissolved Solids (MW-7) indicated an initial intrawell prediction limit exceedance for the listed monitoring wells during the October 2017 sampling event. However, the result was below the tolerance limit. There is no current primary (health based) MCL for total dissolved solids.

Review of the Total Dissolved Solids in the duplicate sample taken from the same well (MW-7) shows a result of 3,000 mg/L, which would not be an exceedance of the intrawell prediction limit of 3,069 mg/L. Due to the variances between the sample and the duplicate, the site will reevaluate MW-7 for Total Dissolved Solids during the next sampling event.

MW-7 is considered a sidegradient well, therefore no further action is needed for exceedances in sidegradient or upgradient wells.

6.4 Proposed Actions


Statistical analysis will continue to be completed with interwell prediction limits per EPA's request. The results of the alternative source demonstration will determine if the site continues with the detection monitoring program on a semi-annual basis or moves into assessment monitoring per the EPA CCR Rule (§ 257.94).

FIGURES

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2020 Site Location Map

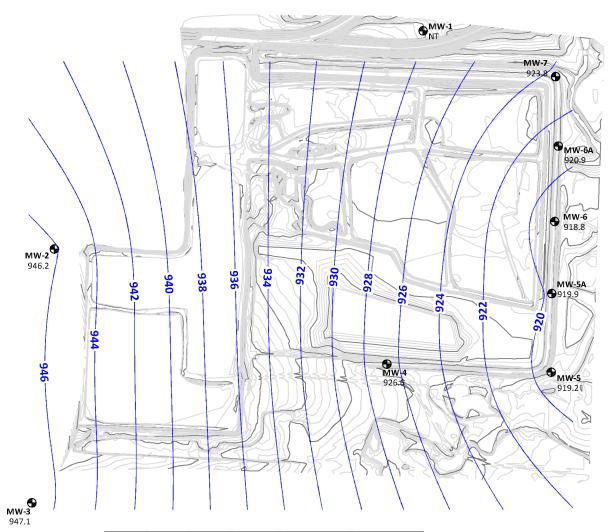
Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2020 Groundwater Monitoring System

FIGURE 2

Well ID	Northing	Easting
MW-1	435791.18 *	2765165.35 *
MW-2	434428.46	2762861.37
MW-3	432842.77	2762720.80
MW-4	433709.99	2764938.99
MW-5	433659.27	2765966.23
MW-5A	434150.04	2765969.78
MW-6	434600.46	2765987.98
MW-6A	435071.44	2766010.46
MW-7	435505.42	2765993.13

^{*} Coordinate location is approximate

Legend


Monitoring Well

Asbury Generating Station CCR Impoundment Groundwater Sampling Event - November 2020 Groundwater Piezometric Surface Map

FIGURE 3

Well ID	Northing	Easting	Top Of Casing	Static Water Level (BTOC)	Static Water Level
MW-1	435791.18	2765165.35	933.4	NT	NT
MW-2	434428.46	2762861.37	947.8	1.6	946.2
MW-3	432842.77	2762720.80	948.8	1.7	947.1
MW-4	433709.99	2764938.99	932.6	6.0	926.6
MW-5	433659.27	2765966.23	919.2	0.0	919.2
MW-5A	434150.04	2765969.78	929.3	9.4	919.9
MW-6	434600.46	2765987.98	928.0	9.2	918.8
MW-6A	435071.44	2766010.46	929.3	8.4	920.9
MW-7	435505.42	2765993.13	928.8	5.0	923.8

Legend

Monitoring Well

APPENDIX 1

EPA/MDNR Correspondence

Missouri Department of

dnr.mo.gov

NATURAL RESOURCES

Eric R. Greitens, Governor

Carol S. Comer, Director

NOV 0.2 2017

Mr. Kavan Stull, Senior Environmental Coordinator Empire District 602 South Joplin Avenue Joplin, MO 64802

RE: Site Characterization Workplan

Dear Mr. Stull:

The Missouri Department of Natural Resources has reviewed the document "Site Characterization Workplan" dated May 16, 2017. The site has undergone extensive characterization regarding construction of a coal combustion residual (CCR) landfill near the CCR impoundments. The department's Water Protection Program has determined, through consulting with the Missouri Geological Survey, this characterization is sufficient and may be used in whole to complete the required monitoring of the sub-surface conditions at the site. Additional submittal of site characterization is not necessary, as the previous submittal meets the requirement for special condition 19(b) of the Missouri State Operating Permit MO-0095362. The facility may proceed with the next step laid out in the permit; special condition 19(c). Enclosed is the Missouri Geological Survey concurrence.

If you were adversely affected by this decision, you may be entitled to an appeal before the Administrative Hearing Commission (AHC) pursuant to 10 CSR 20 1.020 and Section 621.250, RSMo. To appeal, you must file a petition with the AHC within 30 days after the date this decision was mailed or the date it was delivered, whichever date was earlier. If any such petition is sent by registered mail or certified mail, it will be deemed filed on the date it is mailed; if it is sent by any method other than registered mail or certified mail, it will be deemed filed on the date it is received by the AHC. Contact information for the AHC is by mail at Administrative Hearing Commission, United States Post Office Building, Third Floor, 131 West High Street, P.O. Box 1557, Jefferson City, MO 65102, by phone at 573-751-2422, by fax at 573-751-5018, and by website at www.oa.mo.gov/ahc.

Mr. Kavan Stull Page 2

If you have any questions, please do not hesitate to contact Ms. Pam Hackler by mail at Department of Natural Resources, Water Protection Program, P.O. Box 176, Jefferson City, MO 65102-0176, by phone at 573-526-3386; or by email at pam.hackler@dnr.mo.gov. Thank you.

Sincerely,

WATER PROTECTION PROGRAM

Michael J. Abbott, Chief Operating Permits Section

MJA/php

Enclosure

c: Mr. Randall Willoughby, Southwest Regional Office

MEMORANDUM

DATE:

October 18, 2017

SWR18011 Jasper County

TO:

Pam Hackler- WPP- Industrial Wastewater Unit

FROM:

Fletcher N. Bone, Geologist, Environmental Geology Section, Geological Survey Program,

MGS

SUBJECT:

Site characterization for existing CCR

impoundments

Asbury Power Plant Site Characterization Work

Plan- CCR

37 21 22.66 Latitude, -94 35 4.79 Longitude,

Jasper County, Missouri

October 18, 2017

The Missouri Geological Survey (MGS) has reviewed the documents titled, 'NPDES Permit MO-0095362 Asbury Power Plant, Jasper County, Missouri, Site Characterization Work Plan', prepared by Empire District Electric Company, dated September 8, 2017 and 'Site Characterization Work Plan, Coal Combustion Residuals Impoundments, Empire Electric Facility - Permit MO-0095362, Jasper County, Missouri, Geotechnology Project No. J021738.03', prepared by Geotechnology Inc., dated May 16, 2017. The MGS offers the following comment.

General Comment:

The MGS agrees that the existing Coal Combustion Residuals (CCR) impoundments (site 1) do not need further site characterization, at this time. The site characterization performed, as described in the Detailed Site Investigation Report (DSI), dated January 21, 2015, at the proposed CCR impoundment (site 2) that is approximately 1,000 feet south of the existing CCR impoundments (site 1), coupled with the geologic and hydrologic data provided that pertains to the existing CCR impoundments (site 1) (1996 to present data), provides adequate characterization of the geology and hydrology of the site 1. The geologic and hydrologic settings of both sites are similar, with geologic boring logs and potentiometric data of both sites being compared. The hydraulic conductivity testing conducted at the proposed CCR site (site 2) has demonstrated that there is a low potential for groundwater contamination for this area.

If you are in need of further assistance from our office or have questions regarding this evaluation please feel free to contact me at (573) 368-2161.

APPENDIX 2

Baseline Sampling Information

EPA CCR Rule

Appendix III to Part 257—Constituents for Detection Monitoring

Boron

Calcium

Chloride

Fluoride

рΗ

Sulfate

Total Dissolved Solids (TDS)

Appendix IV to Part 257—Constituents for Assessment Monitoring

Antimony

Arsenic

Barium

Beryllium

Cadmium

Chromium

Cobalt

Lead

Lithium

Mercury

Molybdenum

Selenium

Thallium

Radium 226 and 228 combined

1st Baseline Event – January 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.33	<0.5 J	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Calcium	mg/L	NA	57	74	220	84	200	250	140	570
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38
Fluoride	mg/L	4	0.43	0.47	0.31	0.28	0.30	0.24	0.35	<0.2 J
рН	SU	NA	6.33	5.81	6.31	7.33	7.09	6.97	7.09	6.51
Sulfate	mg/L	NA	260	360	1100	140	800	1000	600	1800
Total Dissolved Solids	mg/L	NA	690	790	1900	590	1500	1800	1300	2800
				Append	ix IV					
Antimony	mg/L	0.006	<0.002	<0.002 J						
Arsenic	mg/L	0.01	<0.002 J	0.01	<0.01 J	<0.02 J	<0.01	<0.01	<0.01	<0.01
Barium	mg/L	2	0.044	0.0099	0.065	0.086	0.036	0.02	0.042	0.011
Beryllium	mg/L	0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002 J	<0.002 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01	<0.01
Cobalt	mg/L	NA	<0.01 J	<0.01 J	0.046	<0.002 J	0.018	0.0022	0.02	0.014
Lead	mg/L	0.015	<0.002 J	<0.002	<0.01 J	<0.002 J	<0.002	<0.002	<0.002	<0.002 J
Lithium	mg/L	NA	0.057	0.15	<0.05 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J	<0.5 J
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002 J	<0.002 J	<0.01 J	<0.002	<0.01 J	<0.002
Selenium	mg/L	0.05	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.477 J	<0.427 J	<2.08	<0.563 J	<0.392 J	<0.446 J	<0.306 J	<0.279 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

2nd Baseline Event – March 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
Appendix III										
Boron	mg/L	NA	0.90	0.060	<0.25	0.29	0.29	0.34	0.34	0.29
Calcium	mg/L	NA	120	92	260	94	190	250	160	620
Chloride	mg/L	NA	180	70	15	4.4	23	9.0	36	34
Fluoride	mg/L	4	0.28	0.28	0.10	0.38	0.31	0.23	0.31	0.16
рН	SU	NA	5.82	5.68	6.72	7.15	6.94	6.79	6.98	6.22
Sulfate	mg/L	NA	570	400	570	140	710	970	550	1800
Total Dissolved Solids	mg/L	NA	1300	840	1600	590	1500	1800	1200	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002 J	<0.002	<0.002 J	<0.002
Arsenic	mg/L	0.01	<0.002 J	0.024	0.0038	<0.002 J	0.0038	0.0026	0.0025	0.004
Barium	mg/L	2	0.060	0.012	0.034	0.047	0.042	0.026	0.051	0.0089
Beryllium	mg/L	0.004	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Cadmium	mg/L	0.005	0.0028	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002	<0.002 J	0.0034	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.017	0.0095	0.021	<0.002 J	0.02	0.0061	0.0063	0.016
Lead	mg/L	0.015	<0.002 J	<0.002 J	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002
Lithium	mg/L	NA	0.20	0.15	0.074	0.074	0.14	0.22	0.14	0.30
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.002	<0.002 J	<0.002	<0.002 J	0.0041	<0.002 J	0.0038	<0.002
Selenium	mg/L	0.05	<0.002	<0.002	<0.002	0.0021	0.0028	0.0031	0.0031	<0.002
Thallium	mg/L	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Combined Radium	pCi/L	5	<0.337 J	<0.389 J	<0.84 J	<0.315 J	<0.336 J	<0.319 J	<0.348 J	<0.329 J

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

3rd Baseline Event – May 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.21	0.044	0.027	0.24	0.26	0.25	0.23	0.29		
Calcium	mg/L	NA	130	100	91	5	59	11	90	36		
Chloride	mg/L	NA	140	83	120	4.7	28	10	38	38		
Fluoride	mg/L	4	0.28	0.27	0.22	0.55	0.35	0.26	0.43	0.18		
рН	SU	NA	5.30	4.37	5.97	6.43	6.60	6.51	6.64	5.82		
Sulfate	mg/L	NA	160	540	820	150	920	1400	620	2400		
Total Dissolved Solids	mg/L	NA	500	800	1700	590	1500	1800	1100	2900		
	Appendix IV											
Antimony	mg/L	0.006	<0.002 J									
Arsenic	mg/L	0.01	0.0013	0.027	0.01	0.0043	0.01	0.007	0.0037	0.0082		
Barium	mg/L	2	0.021	0.01	0.025	0.045	0.037	0.041	0.04	0.021		
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	0.0011	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002 J	<0.002 J	0.0025	<0.002 J						
Cobalt	mg/L	NA	0.0072	0.0073	0.0071	<0.0005J	0.00081	0.0035	<0.0005J	0.0037		
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001 J		
Lithium	mg/L	NA	<0.05 J	0.15	<0.05 J	0.074	0.16	0.31	0.12	0.22		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0052	<0.005	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005 J	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.355	<0.427 J	<0.386 J	<0.402 J	<0.377 J	<0.357 J	<0.334 J	<0.333 J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

4th Baseline Event – August 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.19	0.057	0.067	0.27	0.27	0.29	0.27	0.22		
Calcium	mg/L	NA	38	79	110	74	180	220	130	430		
Chloride	mg/L	NA	120	77	35	6	35	12	65	49		
Fluoride	mg/L	4	0.25	0.15	0.3	0.26	0.31	0.23	0.37	0.22		
рН	SU	NA	6.04	5.73	7	7.17	7.04	6.88	7.14	6.29		
Sulfate	mg/L	NA	<0.005 J	<0.005	<0.005 J	<0.005 J						
Total Dissolved Solids	mg/L	NA	460	850	730	540	1500	1800	1100	2900		
	Appendix IV											
Antimony	mg/L	0.006	<0.002 J									
Arsenic	mg/L	0.01	<0.001 J	0.013	<0.001 J	<0.001 J	0.001	<0.001 J	<0.001 J	<0.001 J		
Barium	mg/L	2	0.023	<0.01 J	0.012	0.035	0.031	0.014	0.037	<0.01 J		
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.0052	0.0088	0.0038	<0.0005J	0.00075	<0.0005J	<0.0005J	0.015		
Lead	mg/L	0.015	<0.001 J	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001	<0.001 J	<0.001		
Lithium	mg/L	NA	<0.05 J	0.16	<0.05 J	0.078	0.16	0.22	0.11	0.34		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	<0.005	0.0067	<0.005		
Selenium	mg/L	0.05	<0.005 J	<0.005	<0.005 J	<0.005 J						
Thallium	mg/L	0.002	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.424 J	<0.465 J	<0.833	<0.441 J	<0.435 J	<0.45 J	<0.484 J	<0.418 J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

5th Baseline Event – October 2016 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.2	0.053	0.047	0.24	0.33	0.34	0.31	0.26		
Calcium	mg/L	NA	43	91	100	94	220	260	130	490		
Chloride	mg/L	NA	130	65	74	6	29	13	65	56		
Fluoride	mg/L	4	0.28	0.18	0.28	0.31	0.39	0.25	0.41	0.28		
рН	SU	NA	6.59	5.95	7.21	7.51	8.00	6.98	7.85	6.75		
Sulfate	mg/L	NA	99	470	120	120	1100	1100	570	1400		
Total Dissolved Solids	mg/L	NA	460	850	580	570	1500	1700	1100	2800		
	Appendix IV											
Antimony	mg/L	0.006	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002 J	<0.002		
Arsenic	mg/L	0.01	<0.001	0.014	<0.001 J	<0.001 J	<0.001 J	<0.001	<0.001 J	<0.001 J		
Barium	mg/L	2	0.028	<0.01 J	0.02	0.03	0.033	0.013	0.037	<0.01 J		
Beryllium	mg/L	0.004	<0.001	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002	<0.002	<0.002 J	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.0051	0.0095	0.0013	0.00073	0.0072	<0.0005J	<0.0005J	0.014		
Lead	mg/L	0.015	<0.001 J	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05 J	0.17	<0.05	0.078	0.17	0.24	0.12	0.32		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005	<0.005	<0.005	<0.005 J	0.0066	<0.005	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005J	<0.005		
Thallium	mg/L	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.436J	<0.478J	<0.535J	<0.503J	<0.498J	<0.464J	<0.453J	<0.424J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

6th Baseline Event – March 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	0.22	0.052	0.057	0.23	0.29	0.33	0.36	0.26		
Calcium	mg/L	NA	38	93	250	86	200	260	170	500		
Chloride	mg/L	NA	130	52	19	5.3	29	11	19	39		
Fluoride	mg/L	4	0.21	0.12	<0.1 J	0.29	0.29	0.19	0.3	0.12		
рН	SU	NA	6.07	5.84	6.67	7.32	7.38	7.15	7.21	6.40		
Sulfate	mg/L	NA	130	540	630	150	1100	1000	720	1900		
Total Dissolved Solids	mg/L	NA	500	940	1600	620	1700	1900	1400	3000		
Appendix IV												
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		
Arsenic	mg/L	0.01	<0.001	0.037	0.0022	0.0013	0.0014	<0.001 J	0.0043	<0.001 J		
Barium	mg/L	2	0.021	0.011	0.021	0.033	0.026	0.015	0.027	<0.01 J		
Beryllium	mg/L	0.004	<0.001 J	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 J		
Cadmium	mg/L	0.005	0.0012	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002 J									
Cobalt	mg/L	NA	0.0071	0.0097	0.0096	<0.0005J	0.0022	0.0024	0.0017	0.014		
Lead	mg/L	0.015	<0.001	<0.001	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05 J	0.17	0.072	0.076	0.16	0.23	0.14	0.32		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005 J	<0.005 J	<0.005	<0.005	<0.005 J	<0.005	<0.005 J	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001 J	<0.001 J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	0.575	1.63	0.287	1.50	0.803	2.68	1.73	1.62		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

7th Baseline Event – June 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7		
Appendix III												
Boron	mg/L	NA	<0.08J	<0.08J	0.034	0.27	0.31	0.37	0.36	0.26		
Calcium	mg/L	NA	42	100	300	89	200	260	160	470		
Chloride	mg/L	NA	130	54	110	5.4	23	12	26	48		
Fluoride	mg/L	4	0.43	0.19	0.18	0.35	0.42	0.3	0.42	0.21		
рН	SU	NA	6.35	5.78	6.62	7.22	7.04	6.93	7.09	6.41		
Sulfate	mg/L	NA	78	650	1400	180	940	1300	780	2400		
Total Dissolved Solids	mg/L	NA	450	950	2000	610	1600	1800	1400	2900		
				Append	lix IV							
Antimony	mg/L	0.006	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		
Arsenic	mg/L	0.01	<0.001J	0.1	0.0032	<0.001J	0.0037	<0.001	0.0018	<0.001		
Barium	mg/L	2	0.03	0.016	0.048	0.04	0.026	0.017	0.025	<0.01J		
Beryllium	mg/L	0.004	<0.001	0.0031	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001		
Chromium	mg/L	0.1	<0.002	<0.002	<0.002J	<0.002	<0.002	<0.002	<0.002	<0.002		
Cobalt	mg/L	NA	0.004	0.0088	0.0042	<0.0005J	0.0045	0.00087	0.0059	0.0015		
Lead	mg/L	0.015	0.0033	0.001	0.0074	<0.001	<0.001	<0.001	<0.001	<0.001		
Lithium	mg/L	NA	<0.05J	0.18	0.053	0.085	0.18	0.25	0.15	0.34		
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002		
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005	<0.005J	<0.005	<0.005J	<0.005		
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		
Thallium	mg/L	0.002	<0.001	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001		
Combined Radium	pCi/L	5	<0.397J	<0.337J	<0.403	<0.291J	<0.343J	<0.414J	<0.33J	<0.314J		

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

8th Baseline Event – August 2017 Sampling Event

Constituent	Units	MCL	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6	MW-6A	MW-7
				Append	lix III					
Boron	mg/L	NA	0.16	<0.08J	<0.08J	0.28	0.33	0.34	0.38	0.27
Calcium	mg/L	NA	43	98	83	57	220	250	180	510
Chloride	mg/L	NA	130	45	8.1	5.3	23	12	26	38
Fluoride	mg/L	4	0.26	0.17	0.32	0.27	0.45	0.25	0.4	0.22
рН	SU	NA	6.2	5.7	6.7	7.3	7.0	7.2	7.1	6.3
Sulfate	mg/L	NA	82	550	63	140	920	1100	730	2200
Total Dissolved Solids	mg/L	NA	450	960	450	530	1600	1800	1400	2900
				Append	lix IV					
Antimony	mg/L	0.006	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002J	<0.002
Arsenic	mg/L	0.01	<0.001J	0.013	<0.001J	0.002	<0.001J	<0.001J	<0.001J	<0.001J
Barium	mg/L	2	0.024	0.01	0.018	0.027	0.023	0.018	0.021	<0.01J
Beryllium	mg/L	0.004	<0.001	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001J
Cadmium	mg/L	0.005	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Chromium	mg/L	0.1	<0.002J	<0.002	0.0026	<0.002	<0.002	<0.002	<0.002	<0.002
Cobalt	mg/L	NA	0.0036	0.01	0.00067	<0.0005J	0.0023	<0.0005J	0.0051	0.014
Lead	mg/L	0.015	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Lithium	mg/L	NA	<0.05J	0.17	<0.05J	0.073	0.18	0.22	0.15	0.32
Mercury	mg/L	0.002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	mg/L	NA	<0.005	<0.005J	<0.005	<0.005J	<0.005J	<0.005J	<0.005J	<0.005
Selenium	mg/L	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Thallium	mg/L	0.002	<0.001J	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Combined Radium	pCi/L	5	<0.42J	<0.417J	<0.473	<0.476J	<0.383J	<0.389J	<0.291J	<0.346J

NA = Not Applicable

<x = Less than reporting limit (nondetectable)</pre>

J = Trace value seen above minimum detection limit but below reporting limit (trace)

APPENDIX 3

Monitoring Well Field Inspection Sheets and Field Notes

Facility:	Asbury (CCR (Perm	it#)_		Мо		Well ID: MV		T et dans	🖂
_	formation: of Well Purge	· Doristolt	io Dumm wit	h 2 /0 :	ah Dia	T T	Sample	Bling L	Ouplicate	Field Bla	nkj.
Method	or well rulge	: Peristait	ic Pump wi	in 3/8 - in	ich Dia	meter IU	bing				
		Actual	Purge Volu		_	200	mL po	st pump calib	ration.		
Date / Ti	me Initiated:	_11-	-20 @	4:	30	Date /	Time Com	npleted: 11-	-()-20	<u>a</u>	
	ged To Dryne		N)	I	Petrole	um or G	as Detecto	ed? Y			
Purge Da	nta: 50	ul/mi	N .								
Time	Purge Rate (mL/min)	Cumulat Volum (mL			pH SU)	Condu	cific ctivity /cm)	Dissolved Oxygen (mg/L)	ORP		Other (Color, Clarity, Odor)
4:34	200	Day	7 150	21 7	N	15	7	7 14	(MV)		10
:36	200	1200) 11.	75/	71	67	5	219	39.5		Y
:38		1600	900.0	1006.	59	67	6	1,71	43.5	7	
:40		200	0 17.	26	51	62	20	1,56	460		
			1.11	$\overline{\cap}$		Fi	eld Inspe	ction	Good	<u>Fair</u>	Poor
		7	7,41				ccess		G	F	Р
Time sam	ipled		, , ,		1 1		d Conditi		/ G \	F	Р
	P	11.1	1100	. 117	1.		sing Con		G	F	P
Monther	Canditions /	(a) Ou	1 9()5	Will	100		cking Car		G	F	P
weather	Conditions_[NOU N			-/		ser Condi		G	F	P
		1 1	1				eld Inspec		Yes	No	N/A
Water Le	vol Start	14600	7				ell ID Visi		Υ	(N)	N/A
Water Le	ver start		, ,				anding W ear of We			(N	N/A N/A
		3 a	2				easuring		$\langle \psi \rangle$	N	N/A N/A
Water Le	vel Finish	JUL	\mathcal{I}					with MDNR	V	N	N/A
	-							e Performed	Y	N) N/A
								nation Norma	(Y)	N	N/A
Name (M	EC Field Samı	oler): <u>Ross :</u>	S and Rick El	gin		Equipme	ent Calibr	ation Normal	(Y) or	N N	[/A
		1	100	7		Re	developn	nent Needed		FN	N/A
	C (1)	1	1/1					ons from SAP	Υ	N	N/A
Sampler S	Signature	H		>		Se	diment Ti	hickness Chec	ked Y	N	N/A
Historical	Data: Averag	ge of sampl	ing events								
Constit	uent		Units	MW-		MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН			S.U.	NO TI	-	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance	2	umhos/cm			0.786	1.132	2.083	0.841	1.769	1.900
	ell Depth		ft	Leve							
	GW Depth		ft	Onl	У	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft		_						
2 Syster	m Volumes	,	mL	DON	′Τ	800	800	800	800	800	800

Facility:	Asbury	CCR (Permit	t#	1	Mo	-	Vel/ ID: MV			
Purge Inf	formation:					Sample	Blind I	Ouplicate _	Field Bl	ank
_	of Well Purge	: Peristalti	c Pump with	3/8 - inch D	iameter T	ubing				
		Actual	Purge Volum	ie Removed:	1800	mL pos	st pump calik	ration		
		1	4					1/		
Date / Ti	me Initiated:	11-	-20 @	2:13	Date /	Time Com	pleted: 11	_ // ₋₂₀	@	
Well Pur	ged To Dryne	ss?: Y //N		Petro	oleum or G	ias Detecte	ed? Y / N			
Purge Da	ita:									
Time	Purge Rate (mL/min)	Cumulati Volume (mL	1		Cond	ecific uctivity 6/cm)	Dissolved Oxygen (mg/L)	ORP (MV)		Other (Color, Clarity, Odor)
2:16	200	600	16.0	9 597	- 10:	30	5,17	76.5		1/80 M
012		1000	11.0	5 50	103	8	3,40	72.0		Cross
. 20		1400	1/ 10	1 571	102		2.66	69,2		
022		1000	15 01	DO //	10-	7	4	4		
1000		1200	15.9	1 2,68	10.	00	2,28	64.0		
			0100		<u>F</u>	ield Inspec	tion	Good	<u>Fair</u>	Poor
			XIX,	7		ccess		G	F	Р
Time sam	npled	^				ad Condition			F	P
		1/2 1	(/1)	_		asing Cond		G	F	P
Weather	Conditions	18 SK	, 7U/			ocking Cap iser Condit		G G	F	P
***************************************			^			ield Inspec		Yes	No	N/A
		/ /)) '			Vell ID Visik		Y	Ŋ	N/A
Water Lev	vel Start	1000			S1	tanding Wa	ater	X) (N	N/A
		11	1			lear of We		Y	N	N/A
141		1,16	0			leasuring P		Y	Ŋ	n/A
Water Lev	vel Finish	000 8					with MDNR	Υ	Ŋ	< N/A
							e Performed ation Norma			
Name (M	EC Field Sam	oler): Ross S	and Rick Fle	in			ation Normal		N N	N/A N/A
,			20	7			ent Needed	Υ	N	
			1/6	1		-	ns from SAP	Υ	N	N/A
Sampler S	Signature			1	Se	ediment Th	ickness Chec	ked Y	N	/ N/A
	D.1. A								~	
Constitu	Data: Averag	ge of sampli	Units	MW-1	B4147.2	0.4147.2	B 4147 4	D4147 E	2001 52	2001
pH	uent		S.U.	NO TEST	MW-2 5.83	MW-3 5.08	6.30	MW-5 6.83	MW-5A	MW-6
<u> </u>	Conductance		umhos/cm	GW	0.786	1.132	2.083	0.841	6.82 1.769	6.72 1.900
	ell Depth		ft	Level	0.700	1.132	2.003	0.041	1.703	1.500
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft	2.11			3.00	2.02	0.52	7.00
	n Volumes			DON'T	000	800	800	800	800	800
(Min Pu	rged Amount	:)	mL	SAMPLE	800					

Facility: Asbur	v CCR (Permit	#	1	Monit	oring W	ell ID: MV	1.4		
713341	, con in crime	, 11				Blind D		Field Bla	ank 🗀
Purge Information:				·	/ / / / / / / / / / / / / / / / / / /		aphoute	_ Ticle bit	····· .
Method of Well Pur	ge: Peristalti	c Pump with 3	/8 - inch Dia	ameter Tubi	ng				
				10 mont					
	Actual I	Purge Volume	Removed:	16 (C)	mL post	pump calib	ration .		
Date / Time Initiated	d: <u>11</u>) -20 @ \	315	Date / Tir	ne Comp	oleted: _11 -	10-20	a	
	/		U · 000		-				
Well Purged To Dryi		/ /	Petrol	eum or Gas	Detected	1? Y / N		1 /	
Purge Data: 50	n/min	1		X SUC	£00	d Up	M(10/5	seo.
						t			Oth
Purge	Cumulativ	ve		Specif	ic	Dissolved			(Col
Rate	Volume	Temp.	pН	Conduct		Oxygen	ORP		Clar
Time (mL/min)) (mL) (°C)	(SU)	(mS/cr	n)	(mg/L)	(MV)		Odd
200	600	(5.0)	56.91	1213	3	2.67	30,10	<u> </u>	Clar
100	1000	15.10	6.80	146	3	1.84	27.1	7	7,4
: 102	1400	15.07	16.20	150	6	1,24	14.5	1	
101	1600	15.02	6.80	152	6	1,73	802		N
	100		10.00						
	II.	. T		Field	Inspect	ion	Good	<u>Fair</u>	Poor
		4:11		Acce	ess		G	F	Р
Time sampled		1.10	0.1	- V	Conditio		G	F	Р
	1.1.1	14000	10/	/	ng Condi		G	F	Р
Noathar Canditia	Winds	4 4(19	1 Mil		ing Cap 8		G	F	P
Weather Conditions	0-1.00	11	0000		Condition		6	F	P
	100	1	_		I Inspecti ID Visibl		<u>Yes</u>	NO	N/A
Water Level Start	10,01				ומוצוע טו ding Wat		Υ V =	A. C.	N/A N/A
- atter Ecver Start		116			r of Wee			NI NI	N/A
	11 4	6			suring Po		(V)	M	η N/A
Vater Level Finish	1109	W			_	with MDNR	Υ	N.	N/A
_						Performed	Υ	$n \stackrel{\smile}{N}$) N/A
							14	N	N/A
				Deco	ntamina	ition Normal	mIY	1.4	
lame (MEC Field Sa	mpler): <u>Ross S</u>	and Rick Elgin				ition Normal ion Normal		N 📜	VA
Name (MEC Field Sa	mpler): <u>Ross S</u>	and Rick Elgin		Equipment Rede	Calibrat velopme	ion Normal ent Needed		5) N	√ A
	mpler): <u>Ross S</u>	and Rick Elgin	لا_ت	Equipment Rede Any	Calibrat velopme deviation	ion Normal ent Needed ns from SAP	Y	N N	VA N/A N/A
	mpler): Ross S	and Rick Elgin	ر ت	Equipment Rede Any	Calibrat velopme deviation	ion Normal ent Needed	Y	N N N	VA N/A N/A
Sampler Signature _	1	Pley	لا ت	Equipment Rede Any	Calibrat velopme deviation	ion Normal ent Needed ns from SAP	Y	N	VA N/A N/A
ampler Signature _	1	Pley		Equipment Rede Any Sedir	Calibrat evelopme deviation ment This	ion Normal ent Needed ns from SAP ckness Chec	ked Y	N	N/A N/A N/A
ampler Signature _ listorical Data: Aver	1	ng events Units	MW-1	Rede Any Sedin	t Calibrat evelopme deviation ment Thio	ion Normal ent Needed is from SAP ckness Chec	ked Y	N N N	N/A N/A N/A
ampler Signature _ listorical Data: Aver Constituent pH	rage of samplin	ng events Units S.U.	MW-1 NO TEST	Rede Any Sedin	t Calibrate velopme deviation ment This	ion Normal ent Needed is from SAP ckness Chec MW-4 6.30	ked Y MW-5 6.83	MW-5A 6.82	MW-6 6.72
ampler Signature _ listorical Data: Aver Constituent pH Specific Conductar	rage of samplin	ng events Units S.U. umhos/cm	MW-1 NO TEST GW	Rede Any Sedin	t Calibrat evelopme deviation ment Thio	ion Normal ent Needed is from SAP ckness Chec	ked Y	N N N	N/A N/A N/A
ampler Signature listorical Data: Aver Constituent pH Specific Conductar Total Well Depth	rage of samplin	ng events Units S.U. umhos/cm ft	MW-1 NO TEST GW Level	Rede Any Sedin	t Calibrate velopme deviation ment This MW-3 5.08 1.132	ion Normal ent Needed as from SAP ckness Chec MW-4 6.30 2.083	wked Y MW-5 6.83 0.841	MW-5A 6.82 1.769	MW-6 6.72 1.900
distorical Data: Average Constituent pH Specific Conductar Total Well Depth Average GW Depth	rage of samplin	Units S.U. umhos/cm ft ft	MW-1 NO TEST GW	Rede Any Sedin	t Calibrate velopme deviation ment This	ion Normal ent Needed is from SAP ckness Chec MW-4 6.30	ked Y MW-5 6.83	MW-5A 6.82 1.769	MW-6 6.72
pH Specific Conductar Total Well Depth	rage of samplin	ng events Units S.U. umhos/cm ft	MW-1 NO TEST GW Level	Rede Any Sedin	t Calibrate velopme deviation ment This MW-3 5.08 1.132	ion Normal ent Needed as from SAP ckness Chec MW-4 6.30 2.083	wked Y MW-5 6.83 0.841	MW-5A 6.82 1.769	MW-6 6.72 1.900

Facility:	Asbury 0	CCR (Permit #			Mo		Veli ID: MV		Field Bl	ank 🗀
Purge In	formation:					Sample	Billiu i	Jupiicate //	Pield Bi	ank
_		: Peristaltic I	ump with	3/8 - inch D	iameter Ti	ubing		7.	35	
						_			2/	
		Actual Pu	rge Volume	e Removed:	<u>wou</u>	mL po	st pump calib	ration .		
1-1		/()	'	3:18				MA		
Date / II	me Initiated:	11-	-20 @	J 17 9	_ Date /	Time Com	pleted: 11	<u> </u>	@	
Well Pur	ged To Dryne	1 /)	Petro	leum or G	as Detecte	ed? Y / N)		
Purge Da	ata: OU	M/m	12							
Time	Purge Rate (mL/min)	Cumulative Volume (mL	Temp	. pH (SU)	Condi	ecific uctivity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)		Other (Color, Clarity, Odor)
3824	200	1200	110	ENE S	7	70	C/5	220		0
	200	11100	1500	2 7 7 7	7	1	2100	217		
:26		1900	13.8	1 to 63	1 (0(3,90	DOT		
178		1600	15.8	5 to61	170	18	5116	25,1		
:36		2000	15.8	2 7.60	73	8	4.99	23,7	4	V
				1			6.	V. t		
			_		F	ield Inspe	ction	Geod	Fair	Poor
		-	2.31	γ		ccess		G	F F	P
Time sam	npled) - () (P	ad Conditi	on	G	F	P
		N 1 1	Tropic and	1	/ C	asing Cond	dition	G	F	Р
		land.	4/15	11/10	ha L	ocking Cap	& Lock	G	F	Р
Weather	Conditions	10004	(0)	WILL	R	iser Condi	tion	G	F	Р
			0/		-	eld Insped		Yes	Ne	- ')
	l a	() ((1) ·			ell ID Visil		Υ,	N	N/A
Water Le	vel Start	000				anding W		Y		N/A
		55	21			ear of We		(V)	N	N/A
Water Le	vel Finish	\sim , \sim				leasuring l		$\mathcal{C}_{\mathcal{C}}$	N	N/A
vvater Le	vei riilisii					-	with MDNR e Performed	Y	(N	N/A
							ation Norma	The state of the s		N/A N/A
Name (M	EC Field Sami	oler): Ross S a	nd Rick Elgi	n			ation Normal		N I	N/A
(1	1/1				nent Needed		N	
		11	///	1		-	ons from SAP		N	N/A
Sampler S	Signature			-	Se	ediment Th	nickness Ched	cked Y	(N	N/A
		ge of sampling								
Constit	uent		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
pH	C		S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance	e ui	mhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
	ell Depth		ft	Level	1.24		5.00	4.55		7.05
	GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	e GW Drop m Volumes		ft	DOM'T		900	000	000	000	000
	n volumes irged Amount	:)	mL	DON'T SAMPLE	800	800	800	800	800	800

Facility:	Asbury (CCR (Permit	#	1	Mo	onitoring V	Vell ID: MV	v5A	Field Bla	ank 🗀
Purge In	formation:					Jampie	Dillia E	Jupiicate	_ Fleid bi	alik
_		: Peristaltio	Pump wit	h 3/8 - inch Di	iameter T	ubing				
	Ü			-		_				
		Actual F	urge Volun	ne Removed:	2000	mL po	st pump calib	ration .		
Date / Ti	me Initiated:	11 -	-20 @	2:46	_ Date /	Time Com	pleted: 11.	20	@	
	ged To Dryne	9	^)	Petro	leum or G	as Detecte	ed? Y / 🔊			
Purge Da	nta: 50 m	/win	-							
	/								T	
	Purge	Cumulativ	(A		Sne	ecific				Other (Color
	Rate	Volume	1	p. pH		uctivity	Dissolved			Clarity
Time	(mL/min)	(mL) (°C	.	1	/cm)	Oxygen	ORP		Odor)
1.51	/	1000		100		01)	(mg/L)	(MV)	(Guory
1:51	200	1000	(5,5	6 6.10	157	75	2.66	54.1		
: 5,3		1400	154	7 6.75	233	7)	130	470		
:55		1200	1 /5 1	11/11	25	42	100	211		
		1401	120	100010	77	13	149	3/06	,	
57		220	0 15.5	116.72	339	19	1,82	2204		
							C			
					F	ield Inspec	rtion	Good	<u>Fair</u>	Poor
		1	1,00	1		ccess	CHOTT	G	F	P P
Time sam	npled		· 00			ad Conditi	on	G	F	P
		1 6 7	7	1 /	_	asing Cond		G	F	P
	- 11	1 1 11	Wilco	Chalde		ocking Cap		G	F	P
Weather	Conditions 4	MILLY	100	CO CY	R	iser Condi	tion	(G)	F	Р
			111	J	<u>F</u>	ield Inspec	tion	Yes	No.	N/A
		4 4				ell ID Visil		(Y)	N	N/A
Water Le	vel Start	()	· ·			tanding W		Y	, N	N/A
		16 1	12			lear of We		(Y	N	N/A
Mataula		10,0				leasuring I		Y	N	n/A
water Le	vel Finish		<u> </u>				with MDNR	Y	N	N/A
							e Performed ation Norma	, 2 Z		N/A
Name (M	EC Field Samp	nlar). Ross S	and Rick Flo	in			ation Normal		И 1 И	N/A
realist (ivi	Le riela Jaili	Jiei J. <u>11033 3</u>	allu Men Eli	- /7			nent Needed	U NAS	N N	N/A N/A
		/*	15	0,			ons from SAP	LALLY V	NI NI	N/A
Sampler 9	Signature		10			-	nickness Chec	ked Y	/ N	N/A
·								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		14//1
Historical	Data: Averag	ge of sampli	g events							
Constit	uent		Units	MW-1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance		umhos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
-	ell Depth		ft	Level						
	e GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft							
	m Volumes		mL	DON'T	800	800	800	800	800	800
(Min Pu	rged Amount	:)		SAMPLE	550					

Facility:	Asbury (CCR (Permit #)	Mo	nitoring W	veli jo: MV	v- 🕖		
						Sample	Blind D	Ouplicate	Field Bla	ank 🔼
_	formation:						\mathcal{T}			2.40
Method	of Well Purge	: Peristaltic Pu	imp with 3	3/8 - inch Di	ameter T	ubing				7,10
		Λ	_	Removed:	BU	mL pos	st pump calib	ration .		
Date / Ti	me Initiated:	11-10	-20 @ 🤇	7:24	Date /	Time Com	pleted: <u>11</u>	-10-20	@	
Wall Due	ged To Dryne	and, V (KI)		Datual	la C	D-tt-	J2 V 1			
		. 17/4		Petro	ieum or G	as Detecte	ed? Y / N			
Purge Da	nta: 50 m	/min -								
										Other
	Purge	Cumulative			Spe	cific	Discolused			(Color,
	Rate	Volume	Temp.	рН	1 '	ctivity	Dissolved	ODD		Clarity
Time	(mL/min)	(mL)	(°C)	(SU)		/cm)	Oxygen (mg/L)	ORP (MV)		Odor)
2-19	200	600	150	1 725	171	LÍ.	4 201	510		P
2.01	200	(1000)	100	745	1 170	7	2.0	N (00		<u> </u>
29		1000	15,53	1.19	17	7 9	21/8	269		
ंश		1400	15,9	7.01	17	71	2.65	5107		
:33		1800	154	1 6.96	17.	19	2,36	520)	ali
					F	eld Inspec	tion	Good	<u>Fair</u>	Poor
		~ 2 '	75		V =	ccess	.cioii	G	F F	P
Time sam	npled	\(\sigma\), \(\sigma\)				ad Conditio	on	G	F	Р
		1//	101-			asing Cond		G	F.	P
	/	Just day	4/99	1. 1.		ocking Cap		G	F	P
Weather	Conditions	10004	i n	MAN		iser Condit		G	F	Р
		0 1	1	0	<u>F</u> i	eld Inspec	tion	Yes	No	N/A
		920	<i>'</i> '		V	ell ID Visib	ole	Υ	N	N/A
Water Le	vel Start	1000			S	anding Wa	ater	Y		→ N/A
		11/17				ear of We		Y 3	N	N/A
		1704				leasuring P		(Y)	N	→ N/A
Water Le	vel Finish						with MDNR	Υ	N	N/A
		-					e Performed	, <u> </u>	N	N/A
Name /M	FC Field Some	». أحد C معمل العملم	l ntal. etat				ation Norma		N. N	,
ivame (ivi	EC Field Sam	oler): Ross S and	LKICK EIGIN				ition Normal	(Y)	N I	V/A
		1	9 /	سن			nent Needed ons from SAP	V	(A)	N/A
Sampler S	Signature	/ /V	1			•	ickness Chec	ked Y	(N	N/A N/A
Sumpler c	MBHUTUI C	OF				annent m	iickiiess ciiec	ACU I	(14) N/A
Historical	Data: Avera	ge of sampling e	vents							
Constit	uent		Units	MW- 1	MW-2	MW-3	MW-4	MW-5	MW-5A	MW-6
рН			S.U.	NO TEST	5.83	5.08	6.30	6.83	6.82	6.72
	Conductance	e um	hos/cm	GW	0.786	1.132	2.083	0.841	1.769	1.900
-	ell Depth		ft	Level						
_	e GW Depth		ft	Only	1.24	0.4	5.39	1.32	6.92	7.86
	GW Drop		ft							
	m Volumes		mL	DON'T	800	800	800	800	800	800
[(Min Pu	irged Amount	:)		SAMPLE						

Facility:	Asbury (CCR (Permi	t#)	Monitoring Well ID: MW- Sample Blind Duplicate Field Blank .						
_	formation:					-	Blind I	Duplicate	Field Blank	·	
Method	of Well Purge	: Peristalti	c Pump with	3/8 - inch D	iameter Tu	bing					
							ost pump calib				
Date / Ti	me Initiated:	5- ((-20 @	1:52	_ Date /	Time Cor	mpleted: <u>5 –</u>	10 -20- @	<u>a</u>		
	ged To Dryne		/ /	Petro	oleum or G	as Detect	ed? Y/				
Purge Da	ata: 50	m D/M	un								
Time	Purge Rate (mL/min)	Cumulati Volumo (ml	Temp). pH (SU)	Condu	cific Ictivity /cm)	Dissolved Oxygen (mg/L)	ORP (MV)		Other (Color, Clarity, Odor)	
1:56	200	800	1/2, 2	9 7.17	1 1/09	6	5.15	4219		0	
158		1200	16.3	6714	1 1/04	11	5.03	43.2			
1:00		1600	16.2	A	160	20	4.25	44.1			
307		200	0 1/ 1	1700	11	7	471	493			
		Q OV	0 16.1	1 6.07	16 0	T	1.10	12:5			
	Conditions_	Ind	2:05 45°[lod dez	A Pi Ci Lc Ri	eld Inspectors ad Condit asing Con ocking Ca ser Cond eld Inspectors	tion adition p & Lock ition action	Good G G G G Yes	Fair F F F F No	Poor P P P P P N/A N/A	
	vel Start vel Finish	13,4	17		CI M Sp		eeds	X Y Y	Z z z z	N/A N/A N/A N/A N/A	
Name (M	IEC Field Sam	oler): <u>Ross S</u>	and Rick Ele	in	De Ed Re	econtami Juipment edevelopi	nation Norma Calibration N ment Needed ions from SAP	l Y Y Y Ormai Y	N N N	N/A N/A N/A N/A	
Sampler S	Signature			1	Se	diment T	hickness Chec	cked Y	N	N/A	
	l Data: Avera	ge of sampli	ng events for	: 5/16 + 6/1	7						
Constit	uent		Units	MW- 6A	MW-7						
рН			S.U.	6.87	6.12						
	Conductance	2	umhos/cm	1.601	2.699						
	/ell Depth		ft	7.00	2.04						
	e GW Depth		ft	7.28	3.04						
2 Syster	e GW Drop m Volumes Irged Amount	:)	ft mL	800	800						

Facility:	Asbury C	CR (Permi	t#		Мо	_	Vell JD: MV	v- 7		
Purge Info		: Peristalti	c Pump with	3/8 - inch D	iameter Tu	Sample	Blind I	Duplicate	Field Blank	: <u> </u>
			- · · · · · · · · · · · · · · · · · · ·	.,						
		Actual	Purge Volum			mL pos	st pump calib	ration.		
Date / Tim	ne Initiated:	5- /	<i>0</i> -20 @	1:28	Date /	Time Com	pleted: <u>5 –</u>	16 -20- @	D	
Well Purge	ed To Drynes	ss?: Y /	9 /	Petro	oleum or G	as Detecte	ed? Y / 🕅			
Purge Dat	a: 50	up/	MIN							
		747			T				Ï	
	Purge	Cumulati	vo l		Sno	cific				Other (Color,
	Rate	Volume	I .	. рн		ictivity	Dissolved			Clarity,
Time	(mL/min)	(ml		(SU)		/cm)	Oxygen	ORP		Odor)
			1/20	7 1	15	25	(mg/L)	(MV)		10
1:31	200		1600	7.01	20.	74	0,07	00,6		C
(6)			16.7	66.90	125	19	7138	28,7		
35			16.7	36085	125	46	698	2901		
(7)			11	36.8	1 150	15	635	32.5		5/1
,7(100	000	10x-1-		5:00	0475		-
			11.10		<u>Fi</u>	eld Inspec	ction	Good	<u>Fair</u>	Poor
			(: 4/1)			ccess		G	F	Р
Time samp	oled		, 7 70	21		ad Condition		(G)	F	Р
CAI	वि)	1 A	1	150/		asing Cond			F	P
	/	11/	du T		1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ocking Cap			F	P
Weather (onaitions	VVII (11			ser Condit			F N-	P
		-	Y			<mark>eld Inspec</mark> 'ell ID Visib		Yes Y	No	<u>N/A</u>
Water Lev	el Start	40	3			anding Wa		, , , , , , , , , , , , , , , , , , ,	CIV)	N/A N/A
vvater tev	Ci Stait					ear of We		$\langle \hat{\nabla} \rangle$	CN	N/A
		E.11	ŋ			easuring P			N	N/A
Water Lev	el Finish	0,000	/			_	with MDNR	Ÿ	N	N/A
	-						e Performed	Y	N)	N/A
					De	econtamin	nation Norma		N	N/A
Name (ME	C Field Samp	oler): <u>Ross S</u>	and Bick Elg	in	Ec	quipment (Calibration N	ormal Y	N	N/A
		1	///	تر			nent Needed		N	N/A
		/1	10	1			ons from SAP		N	N/A
Sampler Si	gnature	//			Se	diment Th	nickness Che	cked Y	N	N/A
Historical	D=4=- A			Flac - Cla	-					
		ge of samph	ng events for					T		
Constitu	ent		Units	MW- 6A	MW-7					
pH	Conductor		S.U.	6.87	6.12					
	Conductance		umhos/cm	1.601	2.699					
Total We			ft	7.20	2.04					
	GW Depth		ft	7.28	3.04					
	GW Drop Volumes		ft							
	ged Amount)	mL	800	800					
V. 111111 1 011	C - E - BIII E III					1		L		

APPENDIX 4

Analytical Results from Lab

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive **RIDC Park** Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-113553-1 Client Project/Site: Asbury Ash Pond Sampling Event: Asbury Ash Pond

For:

Midwest Environmental Consultants 2009 East McCarty Street Suite 2 Jefferson City, Missouri 65101

Attn: Mr. Rick Elgin

athy Gartner

Authorized for release by: 11/30/2020 11:20:01 AM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	13
QC Sample Results	23
QC Association Summary	27
Chain of Custody	30
Receipt Chacklists	31

2

4

6

8

9

10

12

13

Case Narrative

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-113553-1

Job ID: 180-113553-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-113553-1

Comments

No additional comments.

Receipt

The samples were received on 11/12/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 3.1° C and 3.3° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

7

3

_

5

6

Q

9

10

12

1.

Definitions/Glossary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Qualifiers

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

Job ID: 180-113553-1

4

_

5

6

8

9

10

12

1,

Accreditation/Certification Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-113553-1

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-21
California	State	2891	04-30-21
Connecticut	State	PH-0688	09-30-20 *
Florida	NELAP	E871008	06-30-21
Georgia	State	PA 02-00416	04-30-21
Illinois	NELAP	004375	06-30-21
Kansas	NELAP	E-10350	01-31-21
Kentucky (UST)	State	162013	04-30-21
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-21
Maine	State	PA00164	03-06-22
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-21
New Hampshire	NELAP	2030	04-05-21
New Jersey	NELAP	PA005	06-30-21
New York	NELAP	11182	04-01-21
North Carolina (WW/SW)	State	434	12-31-21
North Dakota	State	R-227	04-30-21
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-21
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-21
Texas	NELAP	T104704528	03-31-21
US Fish & Wildlife	US Federal Programs	058448	07-31-21
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-21
Virginia	NELAP	10043	09-14-21
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-21

4

5

_

9

10

12

13

 $^{^{\}star} \ \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Eurofins TestAmerica, Pittsburgh

Sample Summary

Client: Midwest Environmental Consultants

Duplicate

Field Blank

Project/Site: Asbury Ash Pond

180-113553-9

180-113553-10

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-113553-1	MW-2	Water	11/10/20 16:40	11/12/20 09:00	
180-113553-2	MW-3	Water	11/10/20 14:25	11/12/20 09:00	
180-113553-3	MW-4	Water	11/10/20 16:10	11/12/20 09:00	
180-113553-4	MW-5	Water	11/10/20 15:30	11/12/20 09:00	
180-113553-5	MW-5A	Water	11/10/20 15:00	11/12/20 09:00	
180-113553-6	MW-6	Water	11/10/20 14:35	11/12/20 09:00	
180-113553-7	MW-6A	Water	11/10/20 14:05	11/12/20 09:00	
180-113553-8	MW-7	Water	11/10/20 13:40	11/12/20 09:00	

11/10/20 15:35 11/12/20 09:00

11/10/20 14:40 11/12/20 09:00

Water

Water

Job ID: 180-113553-1

Method Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-113553-1

Method	Method Description	Protocol	Laboratory
EPA 9056A	Anions, Ion Chromatography	SW846	TAL PIT
EPA 6020A	Metals (ICP/MS)	SW846	TAL PIT
EPA 9040C	pH	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
Field Sampling	Field Sampling	EPA	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

3

4

7

8

9

10

13

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-2 Lab Sample ID: 180-113553-1

Date Collected: 11/10/20 16:40 **Matrix: Water** Date Received: 11/12/20 09:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A t ID: CHICS2100B	- 	1		7	338140	11/23/20 12:16		TAL PIT
Total Recoverable Total Recoverable	Prep Analysis	3005A EPA 6020A		1	50 mL	50 mL	337453 337906	11/17/20 15:33 11/19/20 17:43		TAL PIT
	,	t ID: NEMO								
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			338342	11/24/20 09:55	AVS	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	337288	11/16/20 12:08	GRB	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			337272	11/10/20 17:40	FDS	TAL PIT

Lab Sample ID: 180-113553-2 **Client Sample ID: MW-3**

Date Collected: 11/10/20 14:25 **Matrix: Water** Date Received: 11/12/20 09:00

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab Total/NA Analysis EPA 9056A 338140 11/23/20 12:49 EPS TAL PIT Instrument ID: CHICS2100B Total/NA Analysis EPA 9056A 5 338140 11/23/20 13:05 EPS TAL PIT Instrument ID: CHICS2100B Prep 3005A TAL PIT Total Recoverable 50 mL 50 mL 337453 11/17/20 15:33 TJO Total Recoverable Analysis **EPA 6020A** 337906 11/19/20 17:46 RJR TAL PIT Instrument ID: NEMO Total/NA Analysis **EPA 9040C** 338342 11/24/20 09:55 AVS TAL PIT Instrument ID: NOEQUIP Total/NA Analysis SM 2540C 100 mL 100 mL 337288 11/16/20 12:08 GRB TAL PIT 1 Instrument ID: NOEQUIP Analysis Total/NA Field Sampling 337272 11/10/20 15:25 FDS TAL PIT Instrument ID: NOEQUIP

Client Sample ID: MW-4 Lab Sample ID: 180-113553-3

Date Collected: 11/10/20 16:10 **Matrix: Water** Date Received: 11/12/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			338140	11/23/20 13:22	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		10			338140	11/23/20 13:38	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	337453	11/17/20 15:33	TJO	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			337906	11/19/20 17:48	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			338342	11/24/20 09:55	AVS	TAL PIT

Eurofins TestAmerica, Pittsburgh

Page 8 of 31

Job ID: 180-113553-1

Lab Chronicle

Client: Midwest Environmental Consultants

Instrument ID: NOEQUIP

Project/Site: Asbury Ash Pond

Client Sample ID: MW-4 Lab Sample ID: 180-113553-3

Date Collected: 11/10/20 16:10 Matrix: Water Date Received: 11/12/20 09:00

Batch Batch Dil Initial Batch Final Prepared **Prep Type** Method Factor Number or Analyzed Type Run **Amount** Amount **Analyst** Lab Total/NA SM 2540C 100 mL 100 mL 337288 11/16/20 12:08 GRB TAL PIT Analysis Total/NA Analysis Field Sampling 1 337272 11/10/20 17:10 FDS **TAL PIT** Instrument ID: NOEQUIP

Client Sample ID: MW-5 Lab Sample ID: 180-113553-4

Date Collected: 11/10/20 15:30 Matrix: Water Date Received: 11/12/20 09:00

Batch Batch Dil Initial Final Batch Prepared Method **Prep Type** Type Run **Factor Amount** Amount Number or Analyzed **Analyst** Lab 338140 11/23/20 13:55 TAL PIT Total/NA Analysis EPA 9056A EPS Instrument ID: CHICS2100B Total Recoverable Prep 3005A 50 mL 50 mL 337453 11/17/20 15:33 TJO **TAL PIT** Total Recoverable Analysis EPA 6020A 337906 11/19/20 17:51 RJR TAL PIT 1 Instrument ID: NEMO 11/24/20 09:55 AVS Total/NA Analysis **EPA 9040C** 338342 **TAL PIT** 1 Instrument ID: NOEQUIP Total/NA Analysis SM 2540C 1 100 mL 100 mL 337288 11/16/20 12:08 GRB TAL PIT Instrument ID: NOEQUIP Total/NA Analysis Field Sampling 1 337272 11/10/20 16:30 FDS **TAL PIT**

Client Sample ID: MW-5A Lab Sample ID: 180-113553-5

Date Collected: 11/10/20 15:00 Matrix: Water Date Received: 11/12/20 09:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		2.5			338140	11/23/20 14:27	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		25			338140	11/23/20 14:44	EPS	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A t ID: NEMO		1	50 mL	50 mL	337453 337906	11/17/20 15:33 11/19/20 17:59		TAL PIT TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			338342	11/24/20 09:55	AVS	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	25 mL	100 mL	337288	11/16/20 12:08	GRB	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			337272	11/10/20 16:00	FDS	TAL PIT

2

Job ID: 180-113553-1

3

5

0

8

10

12

1

ica, i ilisbuigii

Project/Site: Asbury Ash Pond

Client: Midwest Environmental Consultants

Instrument ID: NOEQUIP

Client Sample ID: MW-6 Lab Sample ID: 180-113553-6

Date Collected: 11/10/20 14:35

Date Received: 11/12/20 09:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		1			338140	11/23/20 17:43	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		10	1 mL	1.0 mL	338140	11/23/20 18:00	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	337453	11/17/20 15:33	TJO	TAL PIT
Total Recoverable	Analysis Instrumen	EPA 6020A t ID: NEMO		1			337906	11/19/20 18:01	RJR	TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			338342	11/24/20 09:55	AVS	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	337288	11/16/20 12:08	GRB	TAL PIT
Total/NA	Analysis	Field Sampling		1			337272	11/10/20 15:35	FDS	TAL PIT

Client Sample ID: MW-6A Lab Sample ID: 180-113553-7

Date Collected: 11/10/20 14:05

Date Received: 11/12/20 09:00

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A t ID: CHICS2100B		1			338140	11/23/20 18:49	EPS	TAL PIT
Total/NA	Analysis Instrumen	EPA 9056A t ID: CHICS2100B		10			338140	11/23/20 19:05	EPS	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020A t ID: NEMO		1	50 mL	50 mL	337453 337906	11/17/20 15:33 11/19/20 18:04		TAL PIT
Total/NA	Analysis Instrumen	EPA 9040C t ID: NOEQUIP		1			338342	11/24/20 09:55	AVS	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	337288	11/16/20 12:08	GRB	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling t ID: NOEQUIP		1			337272	11/10/20 15:05	FDS	TAL PIT

Client Sample ID: MW-7 Lab Sample ID: 180-113553-8

Date Collected: 11/10/20 13:40

Date Received: 11/12/20 09:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		2.5			338140	11/23/20 19:21	EPS	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total/NA	Analysis	EPA 9056A		25			338140	11/23/20 19:38	EPS	TAL PIT
	Instrumer	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	337453	11/17/20 15:33	TJO	TAL PIT
Total Recoverable	Analysis	EPA 6020A		1			337906	11/19/20 18:06	RJR	TAL PIT
	Instrumer	t ID: NEMO								

Eurofins TestAmerica, Pittsburgh

Page 10 of 31

2

3

5

8

9

11

12

L

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-7 Lab Sample ID: 180-113553-8

Date Collected: 11/10/20 13:40 Date Received: 11/12/20 09:00

Matrix: Water

Job ID: 180-113553-1

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9040C		1			338342	11/24/20 09:55	AVS	TAL PIT
Total/NA	Analysis Instrumen	SM 2540C at ID: NOEQUIP		1	50 mL	100 mL	337289	11/16/20 12:15	GRB	TAL PIT
Total/NA	Analysis Instrumen	Field Sampling		1			337272	11/10/20 14:40	FDS	TAL PIT

Lab Sample ID: 180-113553-9 **Client Sample ID: Duplicate** Date Collected: 11/10/20 15:35 **Matrix: Water**

Date Received: 11/12/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA 9056A		1			338140	11/23/20 19:54	EPS	TAL PIT
	Instrumen	t ID: CHICS2100B								
Total Recoverable	Prep	3005A			50 mL	50 mL	337453	11/17/20 15:33	TJO	TAL PIT
Total Recoverable	Analysis	EPA 6020A		1			337906	11/19/20 18:09	RJR	TAL PIT
	Instrumen	t ID: NEMO								
Total/NA	Analysis	EPA 9040C		1			338342	11/24/20 09:55	AVS	TAL PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	SM 2540C		1	100 mL	100 mL	337289	11/16/20 12:15	GRB	TAL PIT
	Instrumen	t ID: NOEQUIP								
Total/NA	Analysis	Field Sampling		1			337272	11/10/20 16:35	FDS	TAL PIT
	Instrumen	t ID: NOEQUIP								

Client Sample ID: Field Blank Lab Sample ID: 180-113553-10 Date Collected: 11/10/20 14:40

Date Received: 11/12/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA 9056A ID: CHICS2100B		1			338140	11/23/20 22:05	EPS	TAL PIT
Total Recoverable	Prep	3005A			50 mL	50 mL	337453	11/17/20 15:33	TJO	TAL PIT
Total Recoverable	Analysis Instrument	EPA 6020A ID: NEMO		1			337906	11/19/20 18:12	RJR	TAL PIT
Total/NA	Analysis Instrument	EPA 9040C ID: NOEQUIP		1			338342	11/24/20 09:55	AVS	TAL PIT
Total/NA	Analysis Instrument	SM 2540C ID: NOEQUIP		1	100 mL	100 mL	337289	11/16/20 12:15	GRB	TAL PIT

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Eurofins TestAmerica, Pittsburgh

Matrix: Water

Lab Chronicle

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Analyst References:

Lab: TAL PIT

Batch Type: Prep

TJO = Tyler Oliver

Batch Type: Analysis

AVS = Abbey Smith EPS = Evan Scheuer

FDS = Sampler Field

GRB = Gabriel Berghe

RJR = Ron Rosenbaum

Job ID: 180-113553-1

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

pН

Client Sample ID: MW-2 Lab Sample ID: 180-113553-1

Date Collected: 11/10/20 16:40 Date Received: 11/12/20 09:00

11/10/20 17:40

Matrix: Water

Job ID: 180-113553-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	120		1.0	0.32	mg/L			11/23/20 12:16	1
Fluoride	0.39		0.10	0.044	mg/L			11/23/20 12:16	1
Sulfate	56		1.0	0.38	mg/L			11/23/20 12:16	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	37		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 17:43	1
Boron	0.16		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 17:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	430		10	10	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	6.7	HF	0.1	0.1	SU			11/24/20 09:55	1
-	iold Compling								
Method: Field Sampling - F		Qualifier	RI	NONE	l lmi4	D	Prepared	Analyzed	Dil Fac

6.51

SU

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-3 Lab Sample ID: 180-113553-2

Date Collected: 11/10/20 14:25 Date Received: 11/12/20 09:00

Matrix: Water

Job ID: 180-113553-1

Method: EPA 9056A - Anion	s, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62		1.0	0.32	mg/L			11/23/20 12:49	1
Fluoride	0.14		0.10	0.044	mg/L			11/23/20 12:49	1
Sulfate	530		5.0	1.9	mg/L			11/23/20 13:05	5
- Method: EPA 6020A - Metals	s (ICP/MS) - To	otal Recover	rable						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	92		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 17:46	1
Boron	0.056	J	0.080	0.039	mg/L		11/17/20 15:33	11/19/20 17:46	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	860		10	10	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	5.9	HF	0.1	0.1	SU			11/24/20 09:55	1
- Method: Field Sampling - Fi	eld Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	5.68				SU			11/10/20 15:25	1

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-4 Lab Sample ID: 180-113553-3

Date Collected: 11/10/20 16:10 Date Received: 11/12/20 09:00

Matrix: Water

Job ID: 180-113553-1

Method: EPA 9056A - Anion Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.4		1.0	0.32	mg/L			11/23/20 13:22	1
Fluoride	0.093	J	0.10	0.044	mg/L			11/23/20 13:22	1
Sulfate	550		10	3.8	mg/L			11/23/20 13:38	10
- Method: EPA 6020A - Metals	s (ICP/MS) - To	otal Recover	rable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	230		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 17:48	1
Boron	0.039	J	0.080	0.039	mg/L		11/17/20 15:33	11/19/20 17:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1800		10	10	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.1	HF	0.1	0.1	SU			11/24/20 09:55	1
- Method: Field Sampling - Fi	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.80				SU			11/10/20 17:10	

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-5 Lab Sample ID: 180-113553-4

Date Collected: 11/10/20 15:30 Date Received: 11/12/20 09:00

pН

11/10/20 16:30

Matrix: Water

Job ID: 180-113553-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.4		1.0	0.32	mg/L			11/23/20 13:55	1
Fluoride	0.27		0.10	0.044	mg/L			11/23/20 13:55	1
Sulfate	160		1.0	0.38	mg/L			11/23/20 13:55	1
Method: EPA 6020A - Metals	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	71		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 17:51	1
Boron	0.25		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 17:51	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	510		10	10	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.9	HF	0.1	0.1	SU			11/24/20 09:55	1
Method: Field Sampling - Fi	eid Sampling								

7.60

SU

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

pН

Client Sample ID: MW-5A

Date Collected: 11/10/20 15:00 Date Received: 11/12/20 09:00

.ab	Sample	ID:	180-113553-5
	_		Matrix: Water

11/10/20 16:00

Matrix: V	Vater
-----------	-------

Job ID: 180-113553-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	170		2.5	0.80	mg/L			11/23/20 14:27	2.5
Fluoride	0.24	J	0.25	0.11	mg/L			11/23/20 14:27	2.5
Sulfate	2300		25	9.5	mg/L			11/23/20 14:44	25
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recove	rable						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	380		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 17:59	1
Boron	1.9		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 17:59	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	3200		40	40	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.0	HF	0.1	0.1	SU			11/24/20 09:55	1
Method: Field Sampling - F	iold Campling								
Analyte		Qualifier	RI	NONE	I Imit	D	Prepared	Analyzed	Dil Fac

6.72

SU

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-6 Lab Sample ID: 180-113553-6

Date Collected: 11/10/20 14:35 **Matrix: Water**

Date Received: 11/12/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13		1.0	0.32	mg/L			11/23/20 17:43	1
Fluoride	0.22		0.10	0.044	mg/L			11/23/20 17:43	1
Sulfate	1200		10	3.8	mg/L			11/23/20 18:00	10
- Method: EPA 6020A - Metals	s (ICP/MS) - To	otal Recover	rable						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	240		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 18:01	1
Boron	0.32		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 18:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1700		10	10	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.2	HF	0.1	0.1	SU			11/24/20 09:55	1
- Method: Field Sampling - Fi	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	6.96				SU			11/10/20 15:35	

Job ID: 180-113553-1

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: MW-6A Lab Sample ID: 180-113553-7

Date Collected: 11/10/20 14:05 Date Received: 11/12/20 09:00

Matrix: Water

Job ID: 180-113553-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	25		1.0	0.32	mg/L			11/23/20 18:49	1
Fluoride	0.30		0.10	0.044	mg/L			11/23/20 18:49	1
Sulfate	850		10	3.8	mg/L			11/23/20 19:05	10
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	170		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 18:04	1
Boron	0.38		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 18:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1500		10	10	mg/L			11/16/20 12:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.5	HF	0.1	0.1	SU			11/24/20 09:55	1
Method: Field Sampling - F	ield Sampling								
Analyte		Qualifier	RL	NONE	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.09				SU			11/10/20 15:05	

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

pН

Client Sample ID: MW-7 Lab Sample ID: 180-113553-8

Date Collected: 11/10/20 13:40 Date Received: 11/12/20 09:00

11/10/20 14:40

Matrix: Water

Job ID: 180-113553-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	39		2.5	0.80	mg/L			11/23/20 19:21	2.5
Fluoride	0.16	J	0.25	0.11	mg/L			11/23/20 19:21	2.5
Sulfate	2200		25	9.5	mg/L			11/23/20 19:38	25
Method: EPA 6020A - Metals	(ICP/MS) - To	otal Recover	rable						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	460		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 18:06	1
Boron	0.22		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 18:06	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2800		20	20	mg/L			11/16/20 12:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	6.7	HF	0.1	0.1	SU			11/24/20 09:55	1
Method: Field Sampling - Fi									

6.81

SU

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

рН

Client Sample ID: Duplicate Lab Sample ID: 180-113553-9

Date Collected: 11/10/20 15:35

7.60

Matrix: Water Date Received: 11/12/20 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6.4		1.0	0.32	mg/L			11/23/20 19:54	1
Fluoride	0.28		0.10	0.044	mg/L			11/23/20 19:54	1
Sulfate	170		1.0	0.38	mg/L			11/23/20 19:54	1
Method: EPA 6020A - Metal	s (ICP/MS) - To	otal Recover	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	71		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 18:09	1
Boron	0.24		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 18:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	540		10	10	mg/L			11/16/20 12:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
рН	7.8	HF	0.1	0.1	SU			11/24/20 09:55	1
Method: Field Sampling - F	iold Sampling								
Analyte		Qualifier	RL	NONE		D	Prepared	Analyzed	Dil Fac

SU

11/30/2020

Job ID: 180-113553-1

11/10/20 16:35

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Client Sample ID: Field Blank

Lab Sample ID: 180-113553-10

Date Collected: 11/10/20 14:40 Matrix: Water

Date Received: 11/12/20 09:00

Method: EPA 9056A - Anior	ns, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13		1.0	0.32	mg/L			11/23/20 22:05	1
Fluoride	1.4		0.10	0.044	mg/L			11/23/20 22:05	1
Sulfate	ND		1.0	0.38	mg/L			11/23/20 22:05	•
_ Method: EPA 6020A - Metal	ls (ICP/MS) - To	otal Recove	rable						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	0.39	J	0.50	0.13	mg/L		11/17/20 15:33	11/19/20 18:12	
Boron	ND		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 18:12	,
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	33		10	10	mg/L			11/16/20 12:15	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
nH	7.1	HE	0.1	0.1	SU			11/24/20 09:55	

2

Job ID: 180-113553-1

4

6

0

9

10

11

4 0

Project/Site: Asbury Ash Pond

Method: EPA 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 180-338140/30

Matrix: Water

Analysis Batch: 338140

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 180-113553-1

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 0.32 mg/L ND 1.0 11/23/20 15:49 0.044 mg/L Fluoride ND 0.10 11/23/20 15:49 Sulfate ND 1.0 0.38 mg/L 11/23/20 15:49

Lab Sample ID: MB 180-338140/6

Matrix: Water

Analysis Batch: 338140

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike Duplicate

MB MB Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac Chloride 0.32 mg/L 11/23/20 06:32 ND 1.0 Fluoride 0.10 ND 0.044 mg/L 11/23/20 06:32 Sulfate ND 0.38 mg/L 11/23/20 06:32 1.0

Lab Sample ID: LCS 180-338140/29

Matrix: Water Prep Type: Total/NA Analysis Batch: 338140 Snika

	Бріке	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	50.0	49.4		mg/L		99	80 - 120		
Fluoride	2.50	2.54		mg/L		102	80 - 120		
Sulfate	50.0	47.8		mg/L		96	80 - 120		
	Chloride Fluoride	AnalyteAddedChloride50.0Fluoride2.50	Analyte Added Result Chloride 50.0 49.4 Fluoride 2.50 2.54	Chloride 50.0 49.4 Fluoride 2.50 2.54	Analyte Added Result of the control of	Analyte Added Chloride Result 50.0 Qualifier 49.4 Unit mg/L D mg/L Fluoride 2.50 2.54 mg/L mg/L	Analyte Added Result 50.0 Qualifier 49.4 Unit mg/L D 99 Fluoride 2.50 2.54 mg/L 102	Analyte Added Result of the control of	Analyte Added Result Pluoride Qualifier Unit Pluoride D MRec Pluoride Limits Pluoride Fluoride 2.50 2.54 mg/L 102 80 - 120

Lab Sample ID: LCS 180-338140/5

Matrix: Water

Analysis Batch: 338140

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit E	%Rec	Limits	
Chloride	50.0	49.9		mg/L	100	80 - 120	
Fluoride	2.50	2.59		mg/L	104	80 - 120	
Sulfate	50.0	49.0		mg/L	98	80 - 120	

Analysis Batch: 338140

Lab Sample ID: 180-113523-C-1 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	ND	F1	50.0	72.9	F1	mg/L		146	80 - 120	
Fluoride	0.18		2.50	2.49		mg/L		92	80 - 120	
Sulfate	5.8		50.0	47.2		mg/L		83	80 - 120	

Lab Sample ID: 180-113523-C-1 MSD

Matrix: Water

Analysis Batch: 338140

Analysis Batch. 330140	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	ND	F1	50.0	73.4	F1	mg/L		147	80 - 120	1	15
Fluoride	0.18		2.50	2.60		mg/L		97	80 - 120	4	15
Sulfate	5.8		50.0	53.9		mg/L		96	80 - 120	13	15

Eurofins TestAmerica, Pittsburgh

Page 23 of 31

Prep Type: Total/NA

Job ID: 180-113553-1

Method: EPA 9056A - Anions, Ion Chromatography (Continued)

Sample Sample

9 1

ND

ND

0.51 J

Result Qualifier

MR MR

Lab Sample ID: 180-113523-C-17 MS

Matrix: Water

Analysis Batch: 338140

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	9.1		50.0	59.9		mg/L		101	80 - 120	
Fluoride	ND		2.50	2.60		mg/L		104	80 - 120	
Sulfate	0.51	J	50.0	50.7		mg/L		100	80 - 120	

Spike

Added

50.0

2.50

50.0

mg/L

52.7

Lab Sample ID: 180-113523-C-17 MSD

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 338140

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

MSD	MSD				%Rec.		RPD
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
61.1		mg/L		104	80 - 120	2	15
2.74		mg/L		110	80 - 120	5	15

104

Method: EPA 6020A - Metals (ICP/MS)

Lab Sample ID: MB 180-337453/1-A

Matrix: Water

Analysis Batch: 337906

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

80 - 120

Prep Batch: 337453

	IAID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	ND		0.50	0.13	mg/L		11/17/20 15:33	11/19/20 17:38	1
Boron	ND		0.080	0.039	mg/L		11/17/20 15:33	11/19/20 17:38	1

Lab Sample ID: LCS 180-337453/2-A

Matrix: Water

Boron

Analysis Batch: 337906

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 337453

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	25.0	26.0		mg/L		104	80 - 120	
Boron	1.25	1.14		mg/L		92	80 - 120	

Lab Sample ID: 180-113553-10 MS Client Sample ID: Field Blank **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 337906 Prep Batch: 337453**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Calcium	0.39	J	25.0	26.2		mg/L		103	75 - 125	
Boron	ND		1.25	1.13		mg/L		91	75 - 125	

Lab Sample ID: 180-113553-10 MSD Client Sample ID: Field Blank **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 337906 **Prep Batch: 337453** Spike MSD MSD %Rec. **RPD** Sample Sample Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits RPD Limit Calcium 25.0 0.39 J 25.8 mg/L 102 75 - 125 20 1 mg/L

1.15

1.25

75 - 125

92

15

20

10

Prep Type: Total/NA

Client Sample ID: Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Method: EPA 9040C - pH

Lab Sample ID: LCS 180-338342/1

Matrix: Water

Analysis Batch: 338342

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte D SU рН 7.00 7.0 100 99 - 101

Lab Sample ID: 180-113548-D-2 DU

Matrix: Water

Analysis Batch: 338342

Sample Sample DU DU **RPD** Result Qualifier Analyte Result Qualifier Unit D RPD Limit SU 0.3 рΗ 5.9 5.9

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-337288/2

Matrix: Water

Analysis Batch: 337288

MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed **Total Dissolved Solids** ND 10 10 mg/L 11/16/20 12:08

Lab Sample ID: LCS 180-337288/1

Matrix: Water

Analysis Batch: 337288

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 714 662 93 80 - 120 mg/L

Lab Sample ID: 180-113548-D-2 DU

Matrix: Water

Analysis Batch: 337288

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Total Dissolved Solids 530 545 mg/L

Lab Sample ID: MB 180-337289/2

Matrix: Water

Analysis Batch: 337289

мв мв

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 10 10 mg/L 11/16/20 12:15 **Total Dissolved Solids** ND

Lab Sample ID: LCS 180-337289/1

Matrix: Water

Analysis Batch: 337289

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 714 654 mg/L 92 80 - 120

Eurofins TestAmerica, Pittsburgh

QC Sample Results

Client: Midwest Environmental Consultants Job ID: 180-113553-1

Project/Site: Asbury Ash Pond

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 180-113553-9 DU **Client Sample ID: Duplicate Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 337289

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	540		545		mg/L			1	10

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

HPLC/IC

Analysis Batch: 338140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-1	MW-2	Total/NA	Water	EPA 9056A	
180-113553-2	MW-3	Total/NA	Water	EPA 9056A	
180-113553-2	MW-3	Total/NA	Water	EPA 9056A	
180-113553-3	MW-4	Total/NA	Water	EPA 9056A	
180-113553-3	MW-4	Total/NA	Water	EPA 9056A	
180-113553-4	MW-5	Total/NA	Water	EPA 9056A	
180-113553-5	MW-5A	Total/NA	Water	EPA 9056A	
180-113553-5	MW-5A	Total/NA	Water	EPA 9056A	
180-113553-6	MW-6	Total/NA	Water	EPA 9056A	
180-113553-6	MW-6	Total/NA	Water	EPA 9056A	
180-113553-7	MW-6A	Total/NA	Water	EPA 9056A	
180-113553-7	MW-6A	Total/NA	Water	EPA 9056A	
180-113553-8	MW-7	Total/NA	Water	EPA 9056A	
180-113553-8	MW-7	Total/NA	Water	EPA 9056A	
180-113553-9	Duplicate	Total/NA	Water	EPA 9056A	
180-113553-10	Field Blank	Total/NA	Water	EPA 9056A	
MB 180-338140/30	Method Blank	Total/NA	Water	EPA 9056A	
MB 180-338140/6	Method Blank	Total/NA	Water	EPA 9056A	
LCS 180-338140/29	Lab Control Sample	Total/NA	Water	EPA 9056A	
LCS 180-338140/5	Lab Control Sample	Total/NA	Water	EPA 9056A	
180-113523-C-1 MS	Matrix Spike	Total/NA	Water	EPA 9056A	
180-113523-C-1 MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 9056A	
180-113523-C-17 MS	Matrix Spike	Total/NA	Water	EPA 9056A	
180-113523-C-17 MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 9056A	

Metals

Prep Batch: 337453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-1	MW-2	Total Recoverable	Water	3005A	
180-113553-2	MW-3	Total Recoverable	Water	3005A	
180-113553-3	MW-4	Total Recoverable	Water	3005A	
180-113553-4	MW-5	Total Recoverable	Water	3005A	
180-113553-5	MW-5A	Total Recoverable	Water	3005A	
180-113553-6	MW-6	Total Recoverable	Water	3005A	
180-113553-7	MW-6A	Total Recoverable	Water	3005A	
180-113553-8	MW-7	Total Recoverable	Water	3005A	
180-113553-9	Duplicate	Total Recoverable	Water	3005A	
180-113553-10	Field Blank	Total Recoverable	Water	3005A	
MB 180-337453/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-337453/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
180-113553-10 MS	Field Blank	Total Recoverable	Water	3005A	
180-113553-10 MSD	Field Blank	Total Recoverable	Water	3005A	

Analysis Batch: 337906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-1	MW-2	Total Recoverable	Water	EPA 6020A	337453
180-113553-2	MW-3	Total Recoverable	Water	EPA 6020A	337453
180-113553-3	MW-4	Total Recoverable	Water	EPA 6020A	337453
180-113553-4	MW-5	Total Recoverable	Water	EPA 6020A	337453
180-113553-5	MW-5A	Total Recoverable	Water	EPA 6020A	337453

Eurofins TestAmerica, Pittsburgh

Job ID: 180-113553-1

QC Association Summary

Client: Midwest Environmental Consultants

Project/Site: Asbury Ash Pond

Job ID: 180-113553-1

Metals (Continued)

Analysis Batch: 337906 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-6	MW-6	Total Recoverable	Water	EPA 6020A	337453
180-113553-7	MW-6A	Total Recoverable	Water	EPA 6020A	337453
180-113553-8	MW-7	Total Recoverable	Water	EPA 6020A	337453
180-113553-9	Duplicate	Total Recoverable	Water	EPA 6020A	337453
180-113553-10	Field Blank	Total Recoverable	Water	EPA 6020A	337453
MB 180-337453/1-A	Method Blank	Total Recoverable	Water	EPA 6020A	337453
LCS 180-337453/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020A	337453
180-113553-10 MS	Field Blank	Total Recoverable	Water	EPA 6020A	337453
180-113553-10 MSD	Field Blank	Total Recoverable	Water	EPA 6020A	337453

General Chemistry

Analysis Batch: 337288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-1	MW-2	Total/NA	Water	SM 2540C	
180-113553-2	MW-3	Total/NA	Water	SM 2540C	
180-113553-3	MW-4	Total/NA	Water	SM 2540C	
180-113553-4	MW-5	Total/NA	Water	SM 2540C	
180-113553-5	MW-5A	Total/NA	Water	SM 2540C	
180-113553-6	MW-6	Total/NA	Water	SM 2540C	
180-113553-7	MW-6A	Total/NA	Water	SM 2540C	
MB 180-337288/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-337288/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-113548-D-2 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 337289

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-8	MW-7	Total/NA	Water	SM 2540C	
180-113553-9	Duplicate	Total/NA	Water	SM 2540C	
180-113553-10	Field Blank	Total/NA	Water	SM 2540C	
MB 180-337289/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-337289/1	Lab Control Sample	Total/NA	Water	SM 2540C	
180-113553-9 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 338342

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-1	MW-2	Total/NA	Water	EPA 9040C	
180-113553-2	MW-3	Total/NA	Water	EPA 9040C	
180-113553-3	MW-4	Total/NA	Water	EPA 9040C	
180-113553-4	MW-5	Total/NA	Water	EPA 9040C	
180-113553-5	MW-5A	Total/NA	Water	EPA 9040C	
180-113553-6	MW-6	Total/NA	Water	EPA 9040C	
180-113553-7	MW-6A	Total/NA	Water	EPA 9040C	
180-113553-8	MW-7	Total/NA	Water	EPA 9040C	
180-113553-9	Duplicate	Total/NA	Water	EPA 9040C	
180-113553-10	Field Blank	Total/NA	Water	EPA 9040C	
LCS 180-338342/1	Lab Control Sample	Total/NA	Water	EPA 9040C	
180-113548-D-2 DU	Duplicate	Total/NA	Water	EPA 9040C	

Eurofins TestAmerica, Pittsburgh

11/30/2020

Page 28 of 31

2

3

4

6

8

9

11

12

1

QC Association Summary

Client: Midwest Environmental Consultants

Job ID: 180-113553-1

Project/Site: Asbury Ash Pond

Field Service / Mobile Lab

Analysis Batch: 337272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-113553-1	MW-2	Total/NA	Water	Field Sampling	
180-113553-2	MW-3	Total/NA	Water	Field Sampling	
180-113553-3	MW-4	Total/NA	Water	Field Sampling	
180-113553-4	MW-5	Total/NA	Water	Field Sampling	
180-113553-5	MW-5A	Total/NA	Water	Field Sampling	
180-113553-6	MW-6	Total/NA	Water	Field Sampling	
180-113553-7	MW-6A	Total/NA	Water	Field Sampling	
180-113553-8	MW-7	Total/NA	Water	Field Sampling	
180-113553-9	Duplicate	Total/NA	Water	Field Sampling	

4

6

_

9

10

11

12

13

Chain of Custody Record

Client Information	Sampler: RETRS	Lab PM: Gartner, Ca	Cathy	Carrier Tracking No(s):	COC No: 490-52767-15725.1
Client Contact: Mr. Rick Elgin	Phone 573-636-9454	E-Mail: cathy.gartn	ner@testamericainc.com		Page: Page 1 of 1
Company: Midwest Environmental Consultants		Joans	Anal –		Job #:
Address:	Due Date Requested:		Ana'		Codes:
2009 East McCarty Street Suite 2 City:	TAT Requested (days):				M - Hexane N - None
Jefferson City State, Zip:	-				O - AsNaO2 P - Na2O4S
MO, 65101 Phone:	DO #		φ β 180-113	553 Chain of Custody	Q - Na2SO3 R - Na2S2O3
573-636-9454(Tel)	PO#: Purchase Order not required	(0)	lfate		S - H2SO4 T - TSP Dodecahydrate
Email: relgin@mecpc.com	WO #:	Yes or N	Fluoride, Sulfate Total Dissolved 9. a and Boron	<u> </u>	I - Ice U - Acetone J - DI Water V - MCAA
Project Name: Asbury Ash Pond	Project #: 49010011	e (Ye	luoride otal Di	containers	K - EDTA W - ph 4-5 L - EDA Z - other (specify)
Site:	SSOW#:	ample (Ye	Fluoride, Sulfate		Other:
	Sample	Matrix ws/MSD	Chloride,	bero	
	Type	W=water, S=solid,	9056 Chloride 2540C_Calcd 6020 Metals -	Num	
Sample Identification		=waste/oil,	9056	Total Number of	Special Instructions/Note:
	Preservation	Code:	N N D	X	
mut 2	11-10-20 4:40 G C	iw	XXX		Field pH: 6.51
MW-3	11-16-20 2:25				Field pH: 5.6 8
MW-4	1/-10-20 4:00				Field pH: 6.80
MW-5	3:30				Field pH: 7.60
MW-5A	3:00				Field pH: 6.72
MW-6	2:35				Field pH: 6.96
MU-6A	2:05				Field pH: 7.09
mul-7	1:40				Field pH: 6.8/
DUD (MW-9)	3:35	X			Field pH: 7.60
Fire & DIANK	V X		W V V		Field pH:
	2:40				Field pH:
Possible Hazard Identification		Sé	ample Disposal (A fee may be		ed longer than 1 month)
Non-Hazard Flammable Skin Irritant Poil Deliverable Requested: I, II, III, IV, Other (specify)	ison B Unknown Radiological	Sr	pecial Instructions/QC Requirement	Disposal By Lab Arcl	hive For Months
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment:	0,5,00,00,01,00,1 5,,1VIO, EI
Relinquished by:		mec mec	Received by:	ID-t-Ti	10 1120 Company
Relinquished by:		mpany	Received by:	Date/Time:	0 1:30 Conpany
Relinquished by:		mpany	Received by:	Date/Time:	don Rembig
					Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other Re	emarks:	

Login Sample Receipt Checklist

Client: Midwest Environmental Consultants

Job Number: 180-113553-1

Login Number: 113553 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Say, Thomas C

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

5

J

6

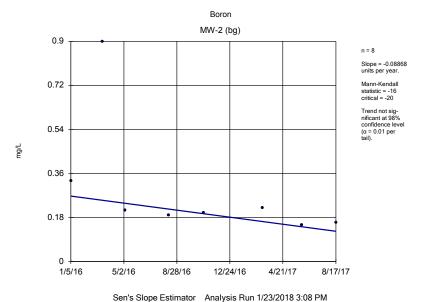
8

4.0

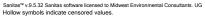
44

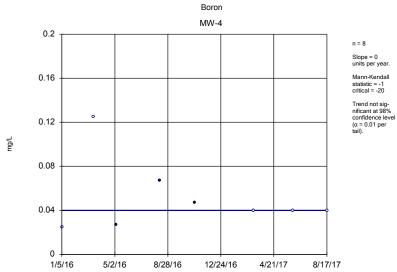
12

1

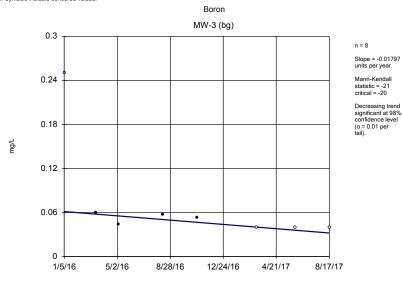

APPENDIX 5

Statistical Analysis

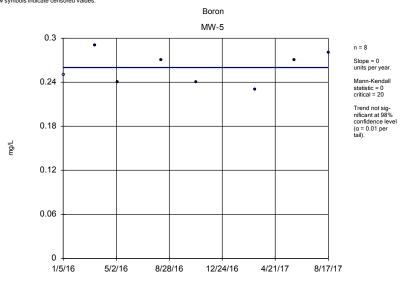



Sanitas[™] Output – Background

Trending Analysis

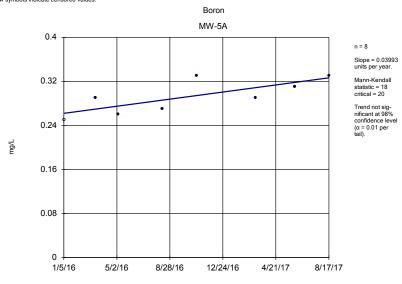

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

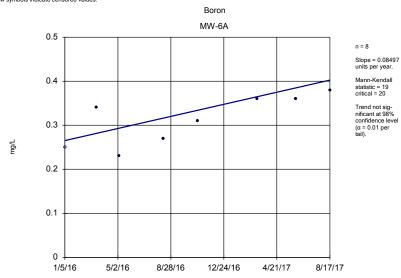
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

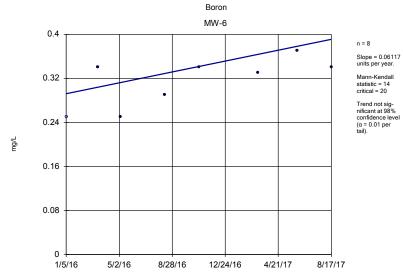

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

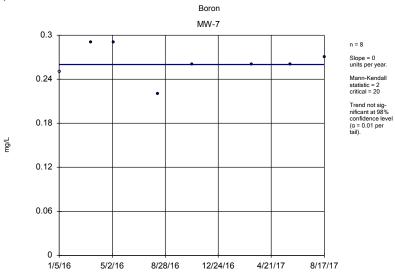
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

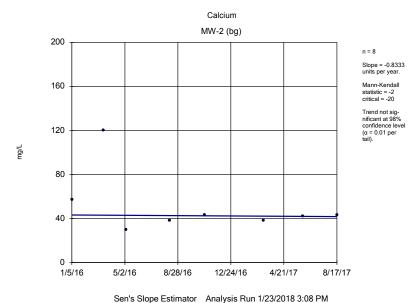
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

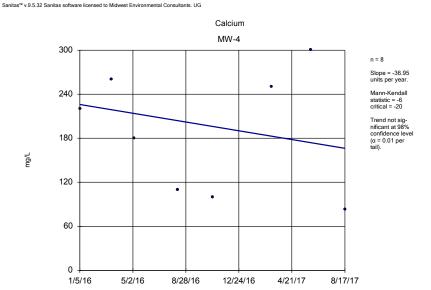
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

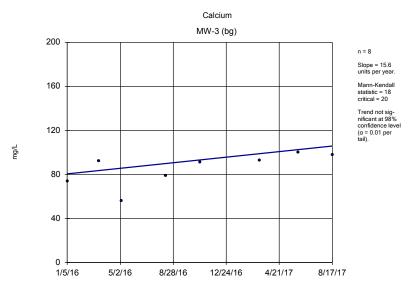

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas $^{\text{™}}$ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

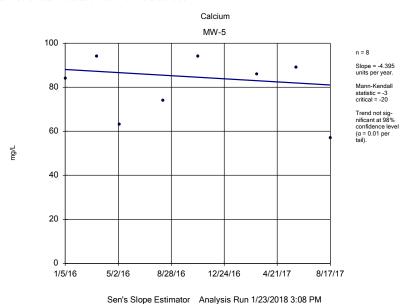


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

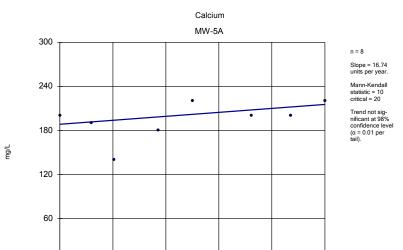
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

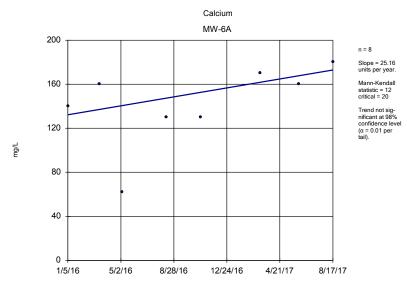
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

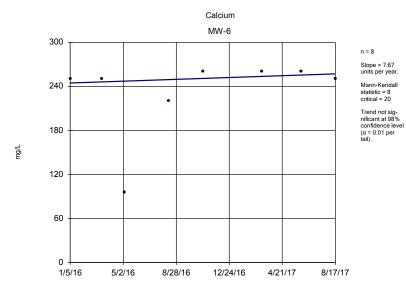
12/24/16

4/21/17

8/17/17

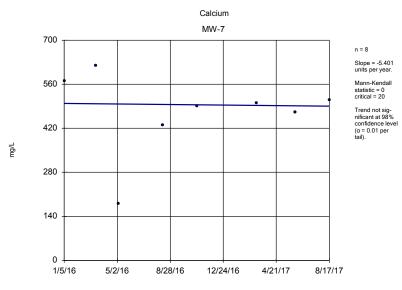

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

8/28/16

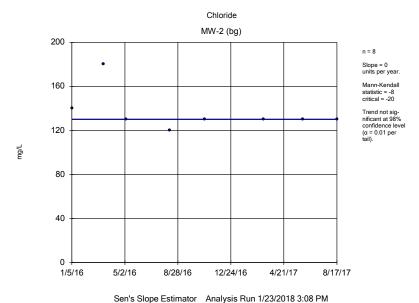

1/5/16

5/2/16

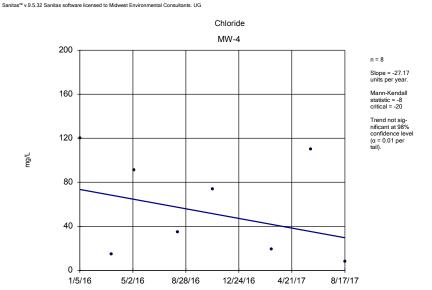
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

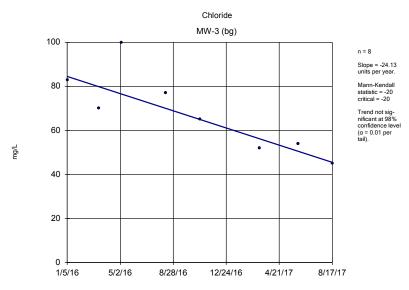

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

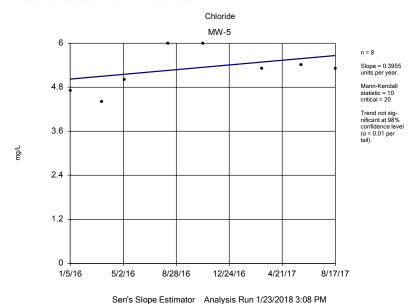


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

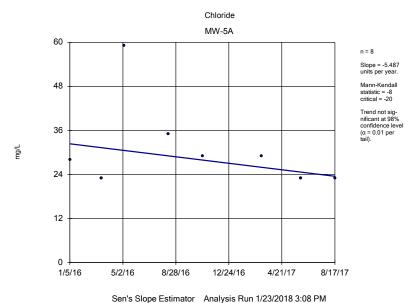
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



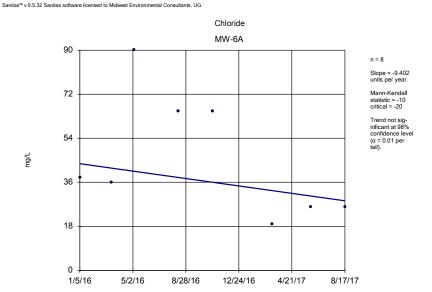
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

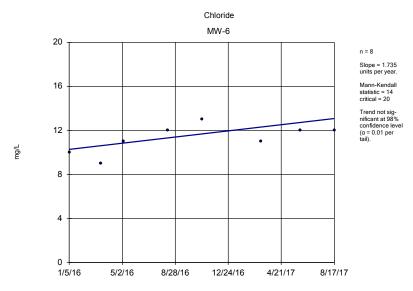
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



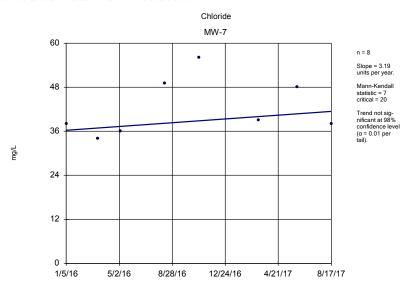
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

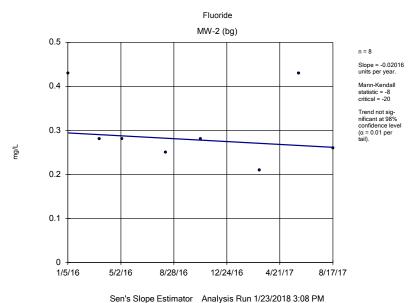
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



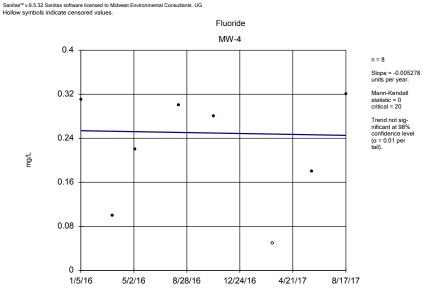
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

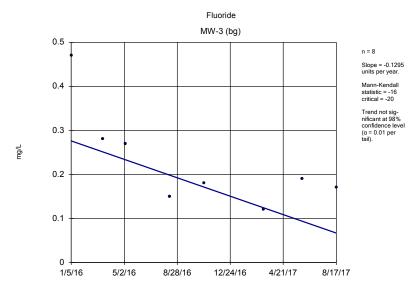

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

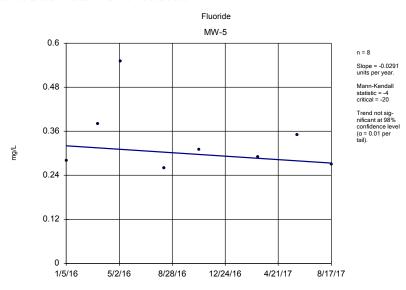


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

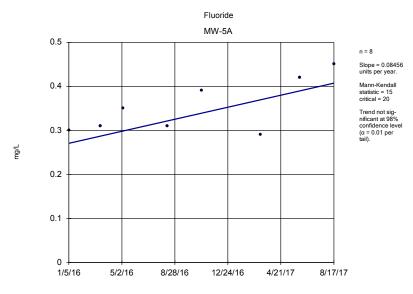
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

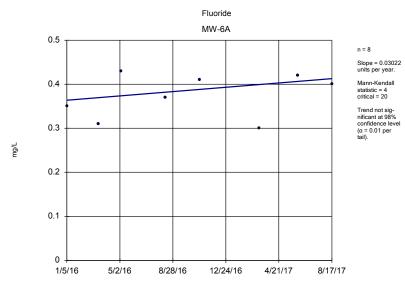

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

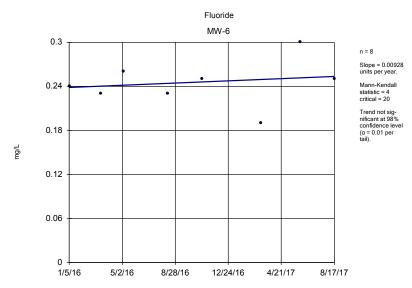
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

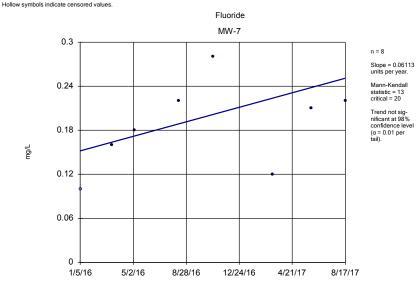
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

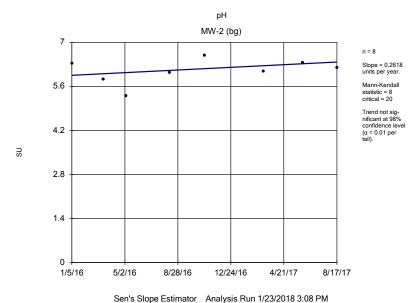

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

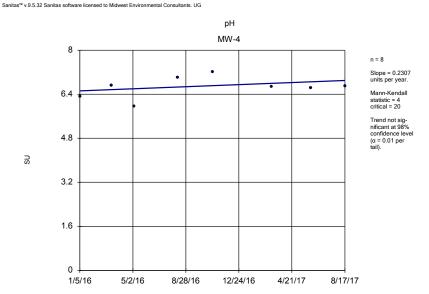
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

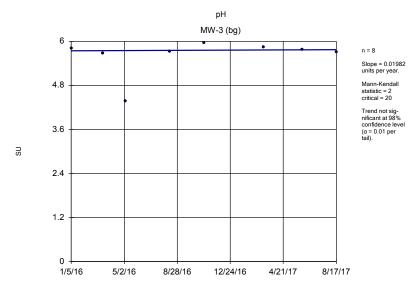

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sanitas™ v.9.5.32 Sanitas software licensed to Midwest Environmental Consultants. UG

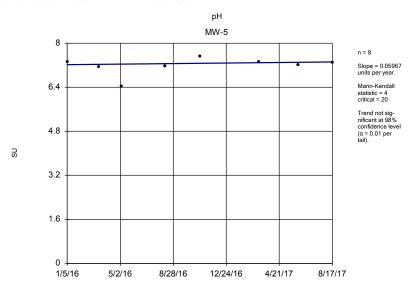


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

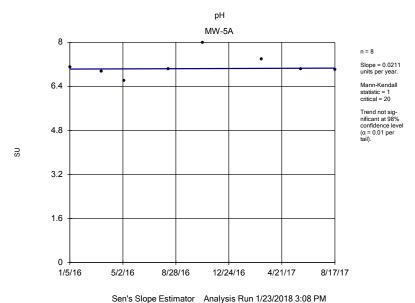
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



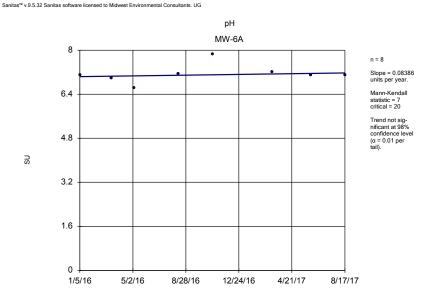
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

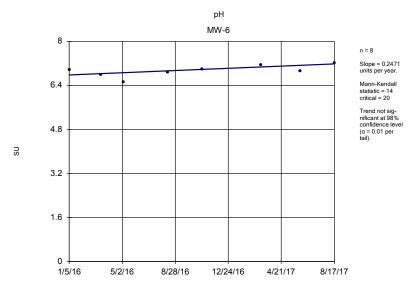

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



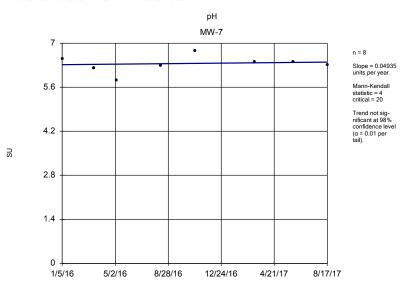
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



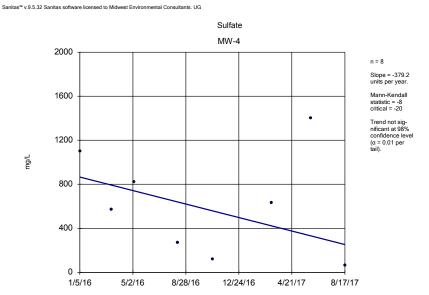
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

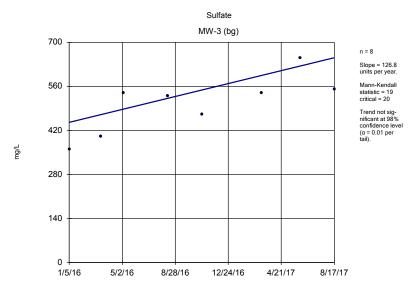
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

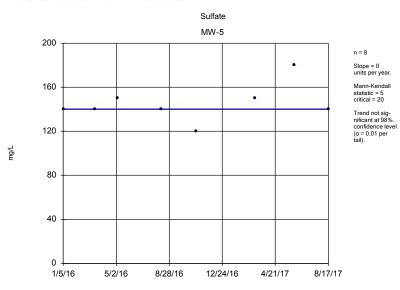


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

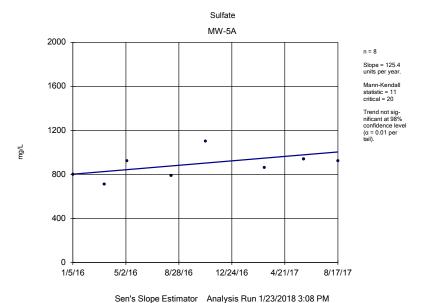
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



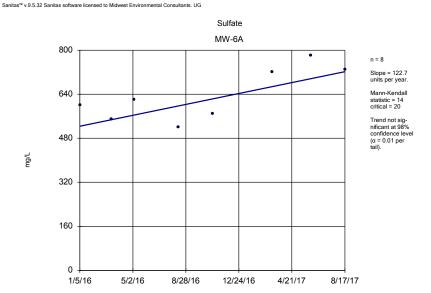
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

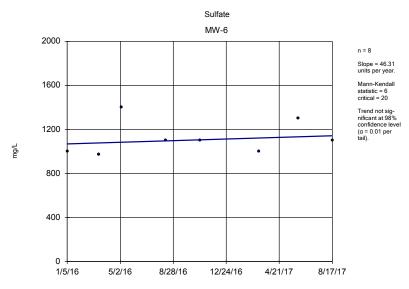
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



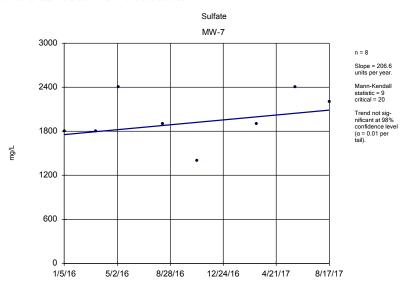
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

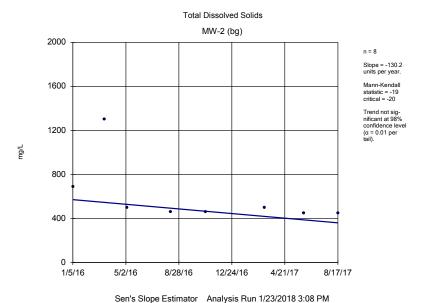
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM



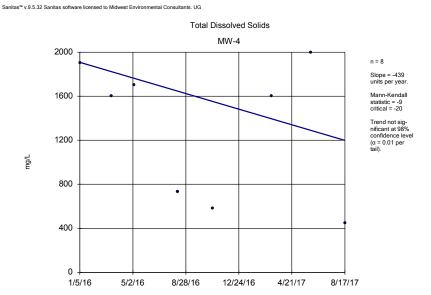
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

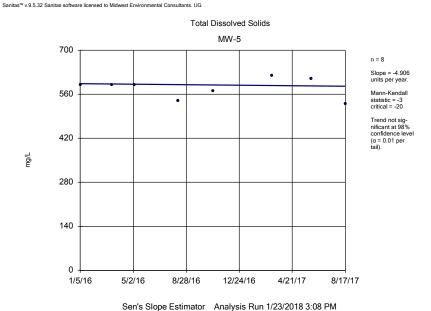


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

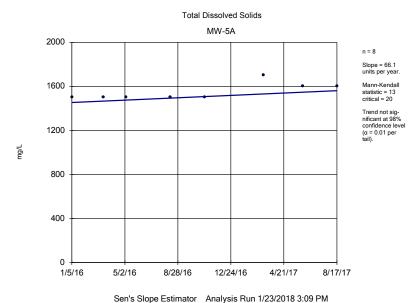
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



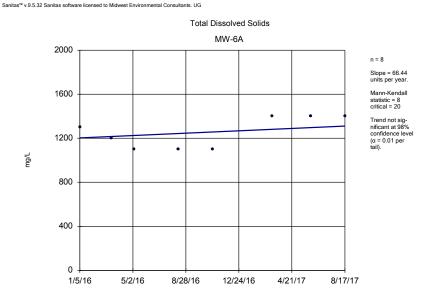
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM

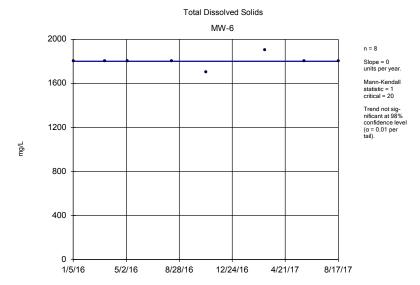
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



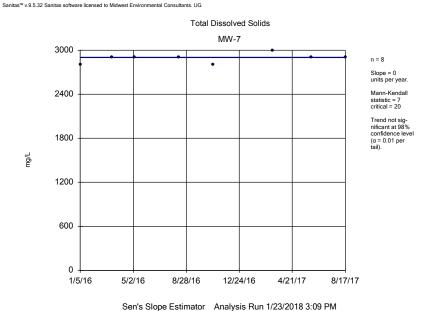
Sen's Slope Estimator Analysis Run 1/23/2018 3:08 PM


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3



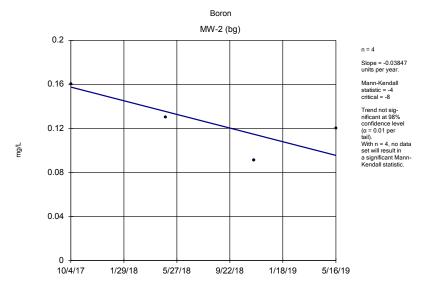
The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Sen's Slope Estimator Analysis Run 1/23/2018 3:09 PM

The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3


The Empire District Client: Midwest Environmental Consultants Data: Asbury CCR Impoundments GW Baseline Database - App 3

Trend Test

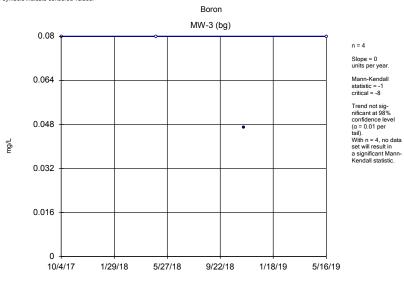
	The Empire District	Client: Midwest Envi	ronmental Consu	ultants	Data: Asbury CCR I	mpoundmer	nts GW Ba	aseline Datat	pase - App 3 only	Printed 1/2	23/2018, 3:10 PM	1
<u>Constituent</u>		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)		MW-2 (bg)	-0.08868	-16	-20	No	8	0	n/a	n/a	0.02	NP
Boron (mg/L)		MW-3 (bg)	-0.01797	-21	-20	Yes	8	50	n/a	n/a	0.02	NP
Boron (mg/L)		MW-4	0	-1	-20	No	8	62.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5	0	0	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-5A	0.03993	18	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6	0.06117	14	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-6A	0.08497	19	20	No	8	12.5	n/a	n/a	0.02	NP
Boron (mg/L)		MW-7	0	2	20	No	8	12.5	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-2 (bg)	-0.8333	-2	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-3 (bg)	15.6	18	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-4	-36.95	-6	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5	-4.395	-3	-20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-5A	16.74	10	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6	7.67	8	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-6A	25.16	12	20	No	8	0	n/a	n/a	0.02	NP
Calcium (mg/L)		MW-7	-5.401	0	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-2 (bg)	0	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-3 (bg)	-24.13	-20	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-4	-27.17	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5	0.3955	10	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-5A	-5.487	-8	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6	1.735	14	20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-6A	-9.402	-10	-20	No	8	0	n/a	n/a	0.02	NP
Chloride (mg/L)		MW-7	3.19	7	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-2 (bg)	-0.02016	-8	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-3 (bg)	-0.1295	-16	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-4	-0.00	0	20	No	8	12.5	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5	-0.0291	-4	-20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-5A	0.08456	15	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6	0.00928	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-6A	0.03022	4	20	No	8	0	n/a	n/a	0.02	NP
Fluoride (mg/L)		MW-7	0.06113	13	20	No	8	12.5	n/a	n/a	0.02	NP
pH (SU)		MW-2 (bg)	0.2618	8	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-3 (bg)	0.01982	2	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-4	0.2307	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5	0.05967	4	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-5A	0.0211	1	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6	0.2471	14	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-6A	0.08386	7	20	No	8	0	n/a	n/a	0.02	NP
pH (SU)		MW-7	0.04935	4	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-2 (bg)	-110.6	-20	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-3 (bg)	126.8	19	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-4	-379.2	-8	-20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5	0	5	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-5A	125.4	11	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6	46.31	6	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-6A	122.7	14	20	No	8	0	n/a	n/a	0.02	NP
Sulfate (mg/L)		MW-7	206.6	9	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-2 (bg)	-130.2	-19	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-3 (bg)	105	25	20	Yes	8	0	n/a	n/a	0.02	NP

Trend Test

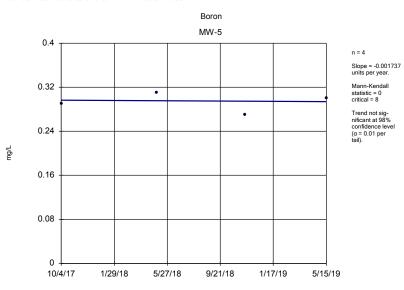
	The Empire District	Client: Midwest Er	nvironmental Cons	ultants	Data: Asbury CCR Im	poundmer	nts GW E	Baseline Datab	ase - App 3 only	Printed 1	I/23/2018, 3:10 PM	
Constituent		<u>Well</u>	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)		MW-4	-439	-9	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5	-4.906	-3	-20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-5A	66.1	13	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6	0	1	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-6A	66.44	8	20	No	8	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)		MW-7	0	7	20	No	8	0	n/a	n/a	0.02	NP

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

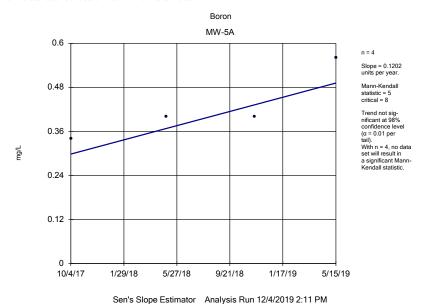
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



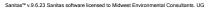
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

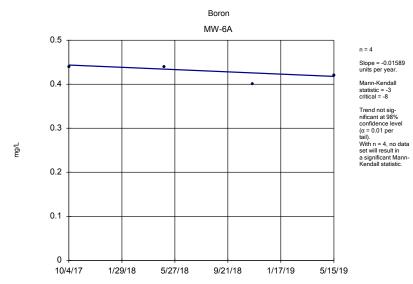

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sanitas $^{\text{™}}$ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

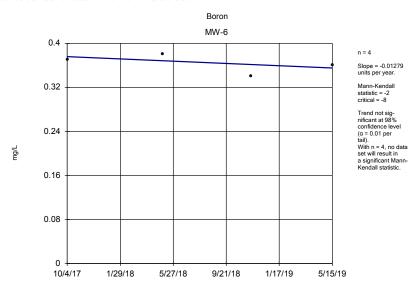

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

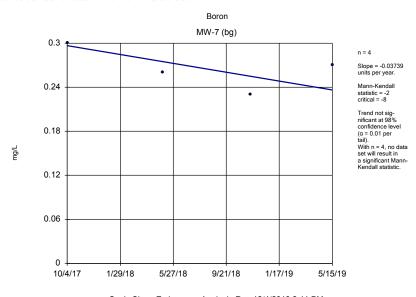
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



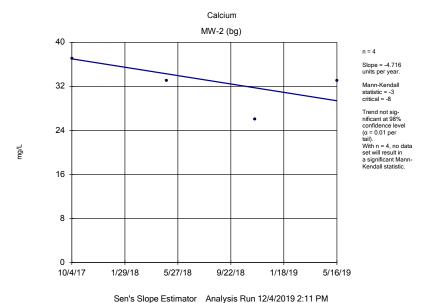

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

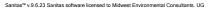

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

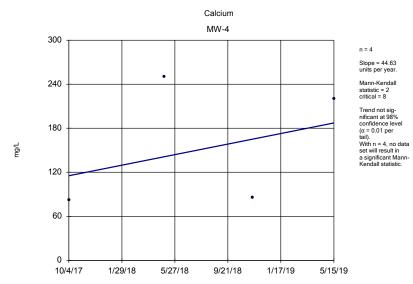

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

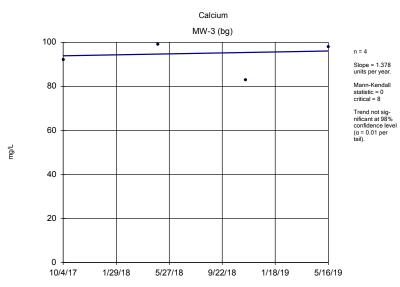

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

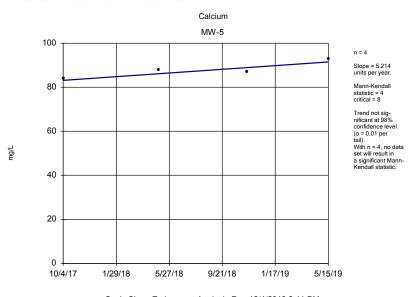
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



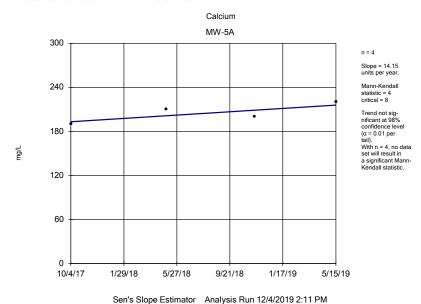

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

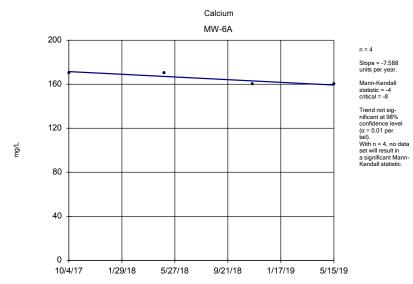

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

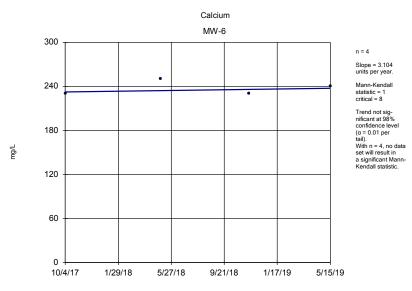
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

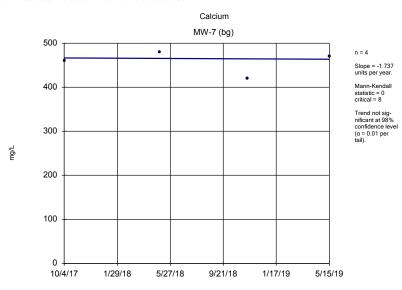

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

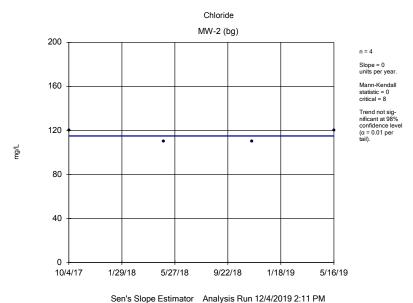

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

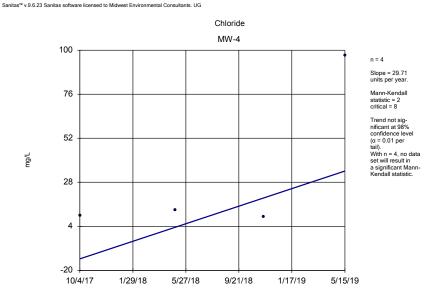

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

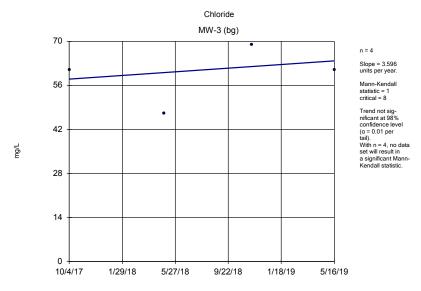

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

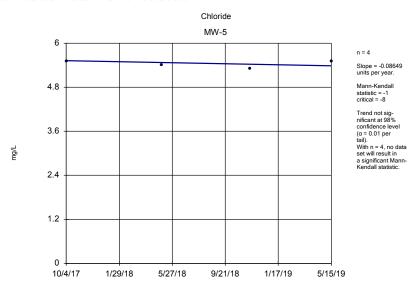


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

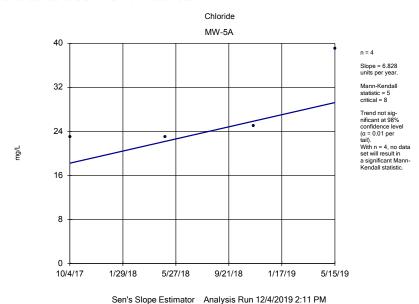
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



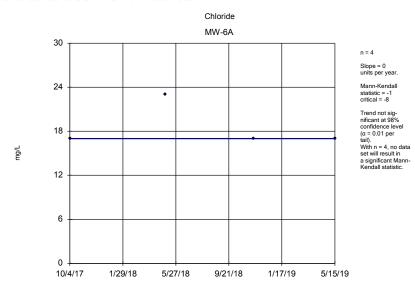
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

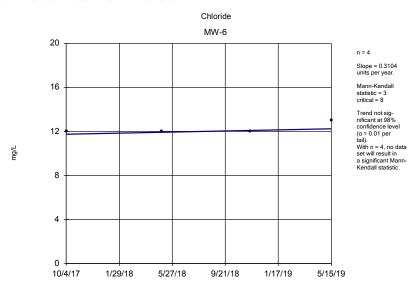
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

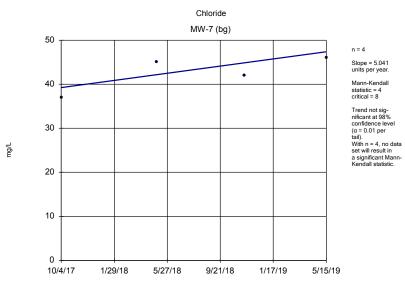

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

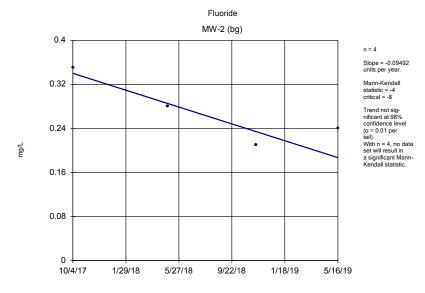

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

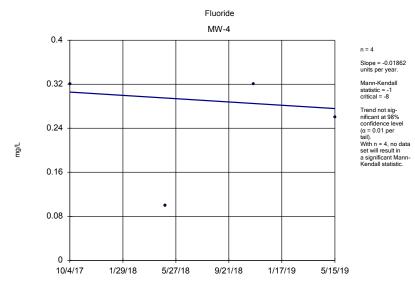

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

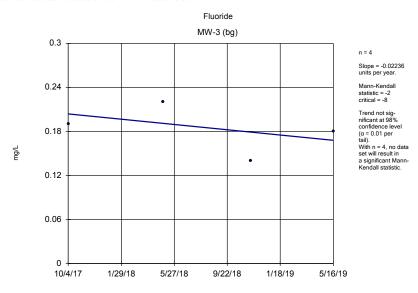

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

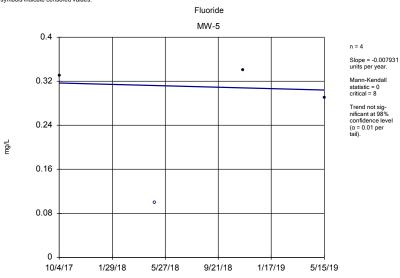

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

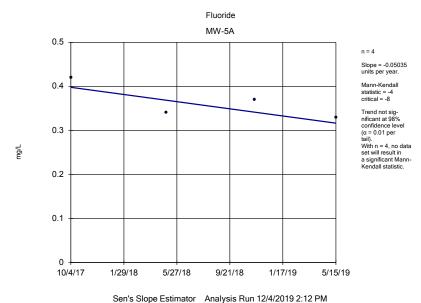

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

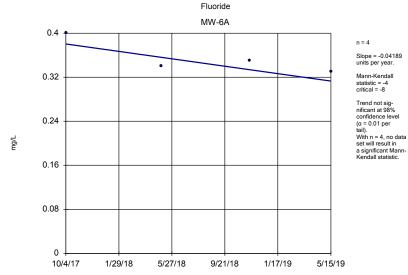
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

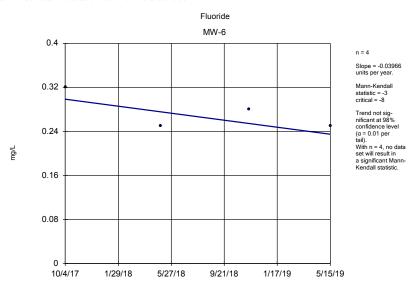
Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

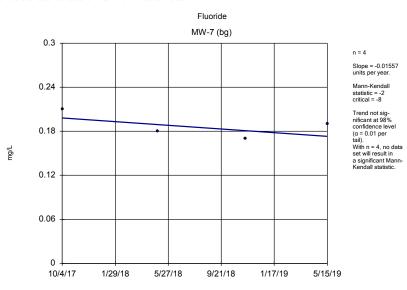

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

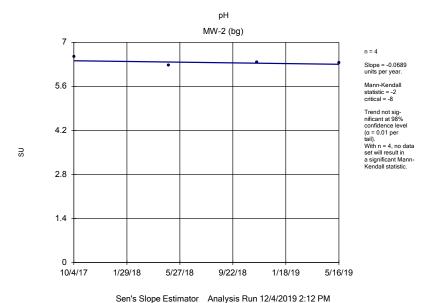

Sen's Slope Estimator Analysis Run 12/4/2019 2:11 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

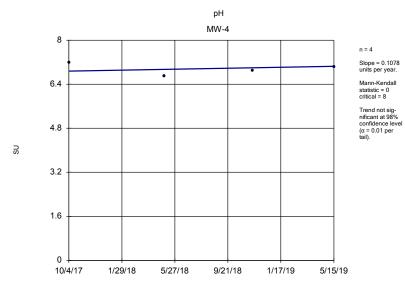

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

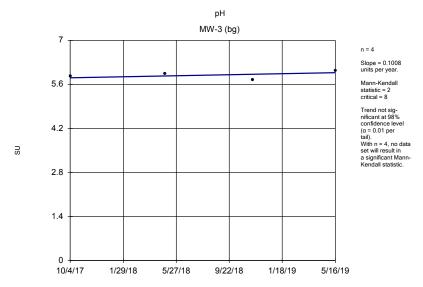

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

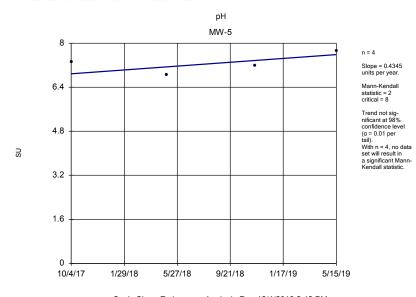


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

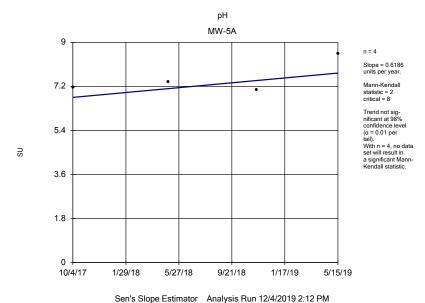
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background



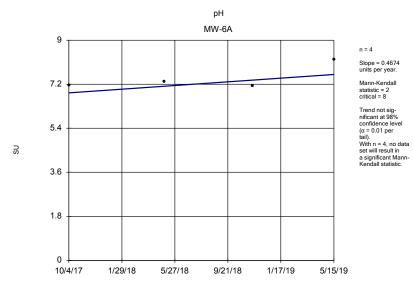
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

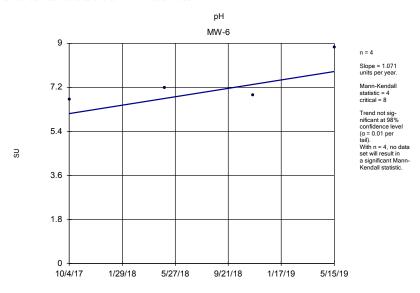
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

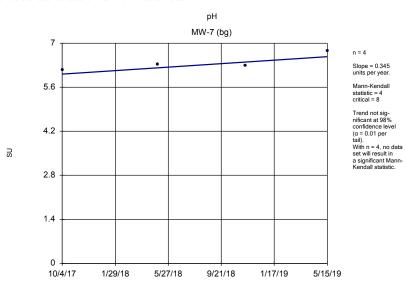

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

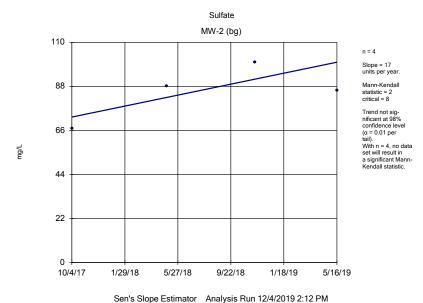

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

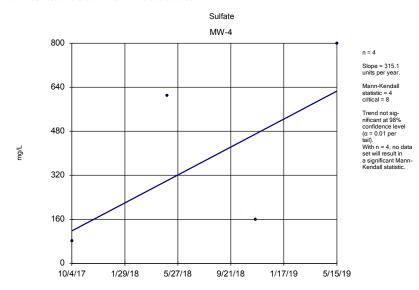

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

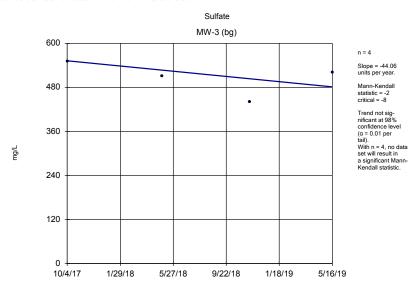
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

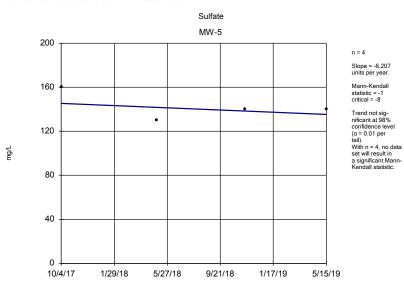

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

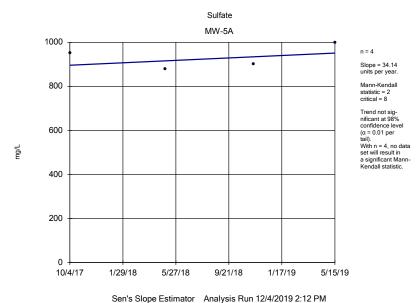

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

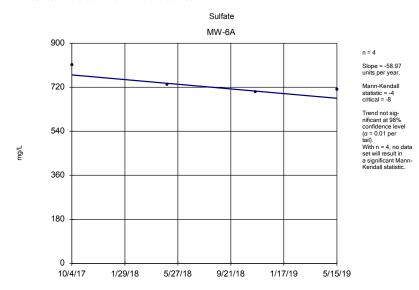

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

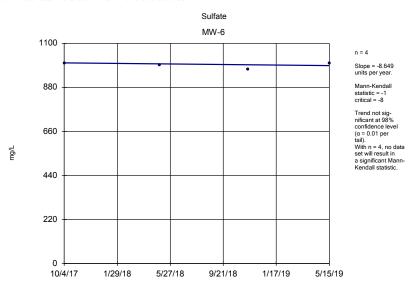
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

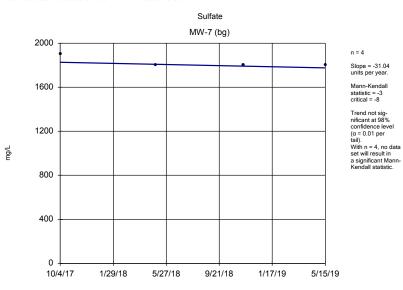

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

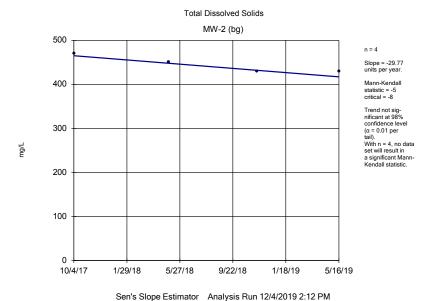

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

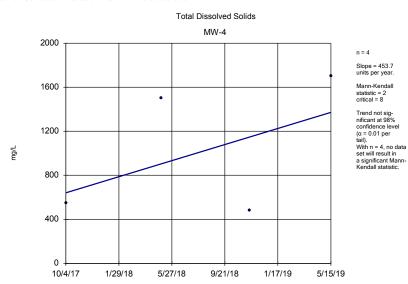

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

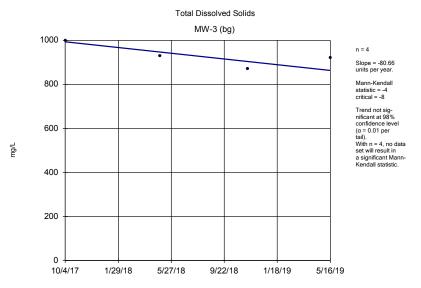
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

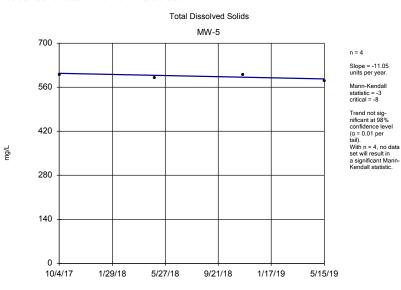
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

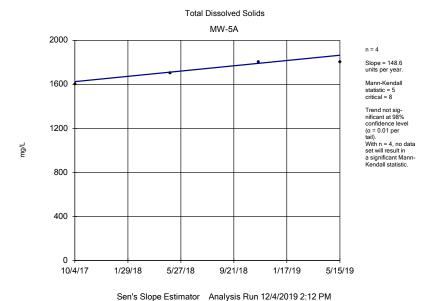
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

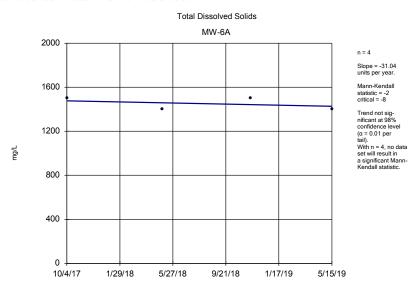
Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

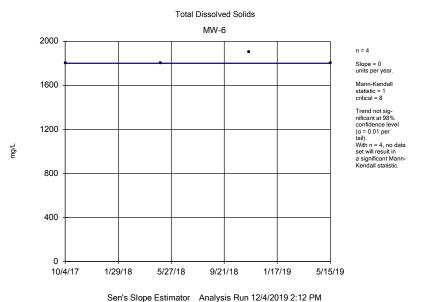
Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

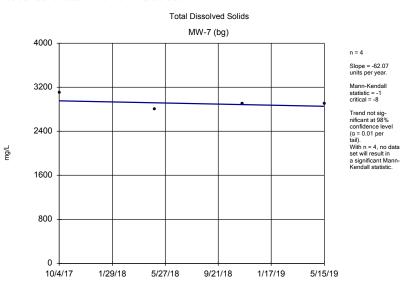

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background


Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

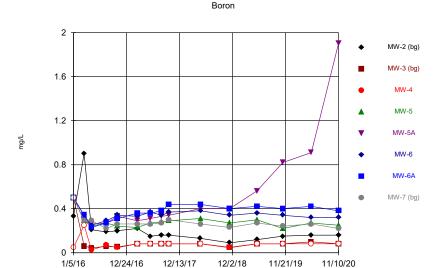
Sanitas™ v.9.6.23 Sanitas software licensed to Midwest Environmental Consultants. UG

Sen's Slope Estimator Analysis Run 12/4/2019 2:12 PM

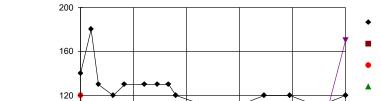
The Empire District Client: Midwest Environmental Consultants Data: 11-19 App 3 Asbury ponds with background

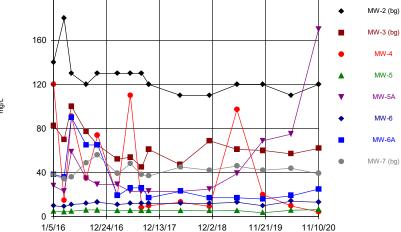
	The Empire District Client: Mic	dwest Environme	ental Consultants	Data: 11-	Data: 11-19 App 3 Asbury ponds with back				ground Printed 12/4/2019, 2:13 PM		
Constituent	Well	Slope	Calc.	Critical	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Boron (mg/L)	MW-2 (bg)	-0.03847	-4	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-3 (bg)	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-4	0	-1	-8	No	4	75	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5	-0.00	0	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-5A	0.1202	5	8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6	-0.01279	-2	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-6A	-0.01589	-3	-8	No	4	0	n/a	n/a	0.02	NP
Boron (mg/L)	MW-7 (bg)	-0.03739	-2	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-2 (bg)	-4.716	-3	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-3 (bg)	1.378	0	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-4	44.63	2	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5	5.214	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-5A	14.15	4	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6	3.104	1	8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-6A	-7.588	-4	-8	No	4	0	n/a	n/a	0.02	NP
Calcium (mg/L)	MW-7 (bg)	-1.737	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-2 (bg)	0	0	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-3 (bg)	3.596	1	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-4	29.71	2	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5	-0.08649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-5A	6.828	5	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6	0.3104	3	8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-6A	0	-1	-8	No	4	0	n/a	n/a	0.02	NP
Chloride (mg/L)	MW-7 (bg)	5.041	4	8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-2 (bg)	-0.09492	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-3 (bg)	-0.02236	-2	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-4	-0.01862	-1	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5	-0.00	0	8	No	4	25	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-5A	-0.05035	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6	-0.03966	-3	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-6A	-0.04189	-4	-8	No	4	0	n/a	n/a	0.02	NP
Fluoride (mg/L)	MW-7 (bg)	-0.01557	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-2 (bg)	-0.0689	-2	-8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-3 (bg)	0.1008	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-4	0.1078	0	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5	0.4345	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-5A	0.6186	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6	1.071	4	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-6A	0.4674	2	8	No	4	0	n/a	n/a	0.02	NP
pH (SU)	MW-7 (bg)	0.345	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-2 (bg)	17	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-3 (bg)	-44.06	-2	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-4	315.1	4	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5	-6.207	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-5A	34.14	2	8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6	-8.649	-1	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-6A	-58.97	-4	-8	No	4	0	n/a	n/a	0.02	NP
Sulfate (mg/L)	MW-7 (bg)	-31.04	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-2 (bg)	-29.77	-5	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-3 (bg)	-80.66	-4	-8	No	4	0	n/a	n/a	0.02	NP
(3 /	- (-3/										

Trend Test Page 2

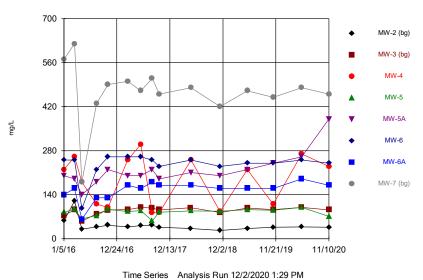

	The Empire District Client: Mi	dwest Environm	ental Consultants	tants Data: 11-19 App 3 Asbury ponds with background Printed 12/4/2019, 2:13 PM							
Constituent	Well	<u>Slope</u>	Calc.	<u>Critical</u>	Sig.	<u>N</u>	%NDs	Normality	<u>Xform</u>	<u>Alpha</u>	Method
Total Dissolved Solids (mg/L)	MW-4	453.7	2	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5	-11.05	-3	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-5A	148.6	5	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6	0	1	8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-6A	-31.04	-2	-8	No	4	0	n/a	n/a	0.02	NP
Total Dissolved Solids (mg/L)	MW-7 (bg)	-62.07	-1	-8	No	4	0	n/a	n/a	0.02	NP

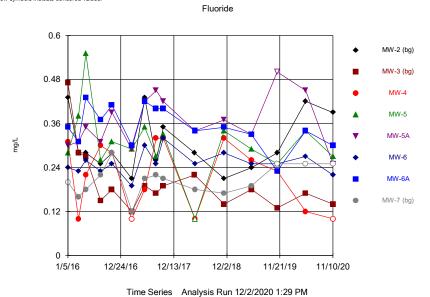
Sanitas[™] Output – Sampling Event


Time Series Analysis


Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG

Time Series Analysis Run 12/2/2020 1:29 PM The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background


Chloride

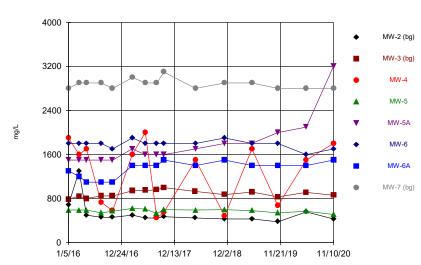

Time Series Analysis Run 12/2/2020 1:29 PM The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

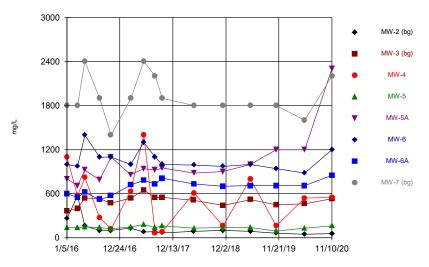
The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG



The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG

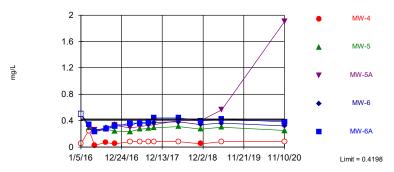

Total Dissolved Solids

Time Series Analysis Run 12/2/2020 1:29 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Time Series Analysis Run 12/2/2020 1:29 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

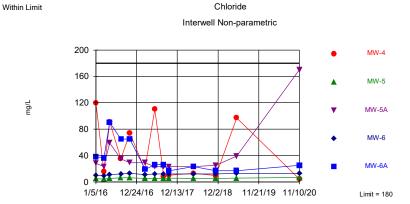


Sanitas[™] Output – Sampling Event Prediction Limits

Hollow symbols indicate censored values.

Exceeds Limit: MW-5A Boron

Interwell Parametric



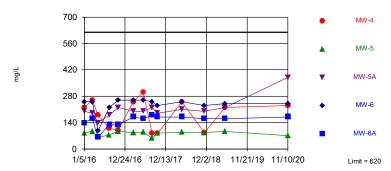
Background Data Summary (based on cube root transformation) (after Kaplan-Meier Adjustment): Mean=0.4907, Std. Dev.=0.1361, n=39, 23.08% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9378, critical = 0.917. Kappa = 1.896 (c=7, w=5.1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Prediction Limit Analysis Run 12/1/2020 4:45 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

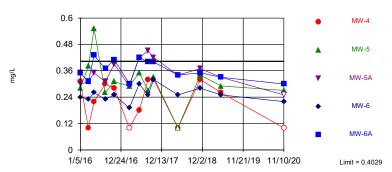

Prediction Limit Analysis Run 12/1/2020 4:45 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG

Within Limit Calcium

Interwell Non-parametric

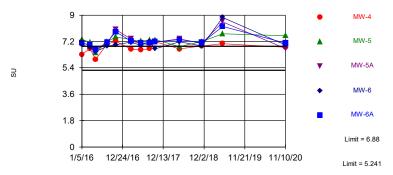

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/1/2020 4:45 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG Hollow symbols indicate censored values.

Within Limit Fluoride
Interwell Parametric

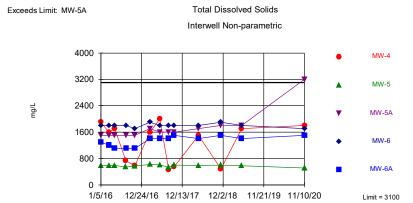


Background Data Summary (based on square root transformation): Mean=0.4783, Std. Dev.=0.08255, n=39, 5.128% NDs. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.934, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.001504. Comparing 5 points to limit.

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG

Exceeds Limits: MW-5, MW-6, MW-6A pH

Interwell Parametric

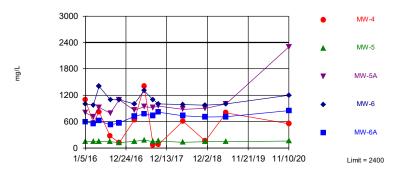


Background Data Summary (based on square transformation): Mean=37.4, Std. Dev.=5.24, n=39. Seasonality was not detected with 95% confidence. Normality test: Shapiro Wilk @alpha = 0.01, calculated = 0.9363, critical = 0.917. Kappa = 1.896 (c=7, w=5, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000752. Comparing 5 points to limit.

Prediction Limit Analysis Run 12/1/2020 4:45 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/1/2020 4:45 PM

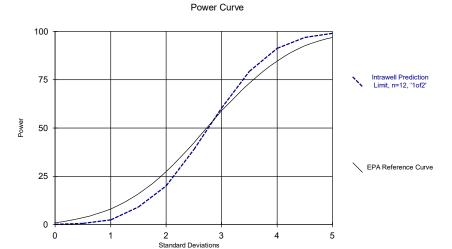
The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background

Sanitas™ v.9.6.27 Sanitas software licensed to Midwest Environmental Consultants. UG

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Wilk normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 39 background values. Annual per-constituent alpha = 0.01194. Individual comparison alpha = 0.0012 (1 of 2). Comparing 5 points to limit. Seasonality was not detected with 95% confidence.

Prediction Limit Analysis Run 12/1/2020 4:45 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background


Prediction Limit

•	The Empire Distric	t Client: Midwes	st Environmental C	Consultants [Data: 11-20 App	p 3 Asb	ury pond	ds with back	ground Printed 12	/1/2020, 4:40	6 PM
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	Transform	<u>Alpha</u>	Method
Boron (mg/L)	MW-4	0.4198	n/a	11/10/2020	0.08ND	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-5	0.4198	n/a	11/10/2020	0.25	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-5A	0.4198	n/a	11/10/2020	1.9	Yes	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-6	0.4198	n/a	11/10/2020	0.32	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Boron (mg/L)	MW-6A	0.4198	n/a	11/10/2020	0.38	No	39	23.08	x^(1/3)	0.001504	Param Inter 1 of 2
Calcium (mg/L)	MW-4	620	n/a	11/10/2020	230	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-5	620	n/a	11/10/2020	71	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-5A	620	n/a	11/10/2020	380	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-6	620	n/a	11/10/2020	240	No	39	0	n/a	0.0012	NP Inter (normality)
Calcium (mg/L)	MW-6A	620	n/a	11/10/2020	170	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-4	180	n/a	11/10/2020	4.4	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-5	180	n/a	11/10/2020	6.4	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-5A	180	n/a	11/10/2020	170	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-6	180	n/a	11/10/2020	13	No	39	0	n/a	0.0012	NP Inter (normality)
Chloride (mg/L)	MW-6A	180	n/a	11/10/2020	25	No	39	0	n/a	0.0012	NP Inter (normality)
Fluoride (mg/L)	MW-4	0.4029	n/a	11/10/2020	0.1ND	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5	0.4029	n/a	11/10/2020	0.27	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-5A	0.4029	n/a	11/10/2020	0.25ND	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6	0.4029	n/a	11/10/2020	0.22	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
Fluoride (mg/L)	MW-6A	0.4029	n/a	11/10/2020	0.3	No	39	5.128	sqrt(x)	0.001504	Param Inter 1 of 2
pH (SU)	MW-4	6.88	5.241	11/10/2020	6.8	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5	6.88	5.241	11/10/2020	7.6	Yes	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-5A	6.88	5.241	11/10/2020	6.72	No	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6	6.88	5.241	11/10/2020	6.96	Yes	39	0	x^2	0.000752	Param Inter 1 of 2
pH (SU)	MW-6A	6.88	5.241	11/10/2020	7.09	Yes	39	0	x^2	0.000752	Param Inter 1 of 2
Sulfate (mg/L)	MW-4	2400	n/a	11/10/2020	550	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-5	2400	n/a	11/10/2020	160	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-5A	2400	n/a	11/10/2020	2300	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-6	2400	n/a	11/10/2020	1200	No	39	0	n/a	0.0012	NP Inter (normality)
Sulfate (mg/L)	MW-6A	2400	n/a	11/10/2020	850	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-4	3100	n/a	11/10/2020	1800	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5	3100	n/a	11/10/2020	510	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-5A	3100	n/a	11/10/2020	3200	Yes	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6	3100	n/a	11/10/2020	1700	No	39	0	n/a	0.0012	NP Inter (normality)
Total Dissolved Solids (mg/L)	MW-6A	3100	n/a	11/10/2020	1500	No	39	0	n/a	0.0012	NP Inter (normality)

Sanitas[™] Output – Sampling Event

Power Curve

Kappa = 2.73, based on 18 compliance wells and 5 constituents, evaluated semi-annually (this report reflects annual total).

Analysis Run 12/1/2020 4:47 PM

The Empire District Client: Midwest Environmental Consultants Data: 11-20 App 3 Asbury ponds with background